multiData.eigengeneSignificance(WGCNA)
multiData.eigengeneSignificance()所属R语言包:WGCNA
Eigengene significance across multiple sets
跨多台Eigengene意义
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function calculates eigengene significance and the associated significance statistics (p-values, q-values etc) across several data sets.
此函数计算eigengene的意义和跨多个数据集相关的意义统计(p-值,Q值等)。
用法----------Usage----------
multiData.eigengeneSignificance(
multiData, multiTrait,
moduleLabels, multiEigengenes = NULL,
useModules = NULL,
corAndPvalueFnc = corAndPvalue, corOptions = list(),
corComponent = "cor",
getQvalues = FALSE, setNames = NULL,
excludeGrey = TRUE, greyLabel = ifelse(is.numeric(moduleLabels), 0, "grey"))
参数----------Arguments----------
参数:multiData
Expression data (or other data) in multi-set format (see checkSets). A vector of lists; in each list there must be a component named data whose content is a matrix or dataframe or array of dimension 2.
表达在多设置的格式的数据(或其他数据)(见checkSets)。一个向量的列表,每个列表中必须有一个名为data“,其内容是一个矩阵或数据框或数组的维数为2的组件。
参数:multiTrait
Trait or ourcome data in multi-set format. Only one trait is allowed; consequesntly, the data component of each component list can be either a vector or a data frame (matrix, array of dimension 2).
多套格式的特质或ourcome数据。只有一个特征被允许; consequesntly,data组件的每个组件列表可以是一个矢量或一个数据框(2维阵列的矩阵,)。
参数:moduleLabels
Module labels: one label for each gene in multiExpr.
模块标签:一个标签,每个基因在multiExpr。
参数:multiEigengenes
Optional eigengenes of modules specified in moduleLabels. If not given, will be calculated from multiExpr.
可选的特征基因在moduleLabels指定的模块。如果没有给出,将计算出multiExpr。
参数:useModules
Optional specification of module labels to which the analysis should be restricted. This could be useful if there are many modules, most of which are not interesting. Note that the "grey" module cannot be used with useModules.
可选规范应限制分析模块的标签。这可能是有用的,如果有很多模块,其中大部分是有趣的。需要注意的是“灰色”模块不能使用useModules。
参数:corAndPvalueFnc
Function that calculates associations between expression profiles and eigengenes. See details.
函数,计算表达谱和特征基因之间的关联。查看详细信息。
参数:corOptions
List giving additional arguments to function corAndPvalueFnc. See details.
目录其他参数功能corAndPvalueFnc。查看详细信息。
参数:corComponent
Name of the component of output of corAndPvalueFnc that contains the actual correlation.
输出corAndPvalueFnc的组件的名称包含实际的相关性。
参数:getQvalues
logical: should q-values (estimates of FDR) be calculated?
逻辑:Q值(估计FDR)计算出来的?
参数:setNames
names for the input sets. If not given, will be taken from names(multiExpr). If those are NULL as well, the names will be "Set_1", "Set_2", ....
输入集的名称。如果没有给出,将采取从names(multiExpr)。如果这些都NULL以及名是"Set_1", "Set_2", ...。
参数:excludeGrey
logical: should the grey module be excluded from the kME tables? Since the grey module is typically not a real module, it makes little sense to report kME values for it.
逻辑:灰色的模块应该被排除在外的金桥表吗?由于灰色模块通常不是一个真正的模块,这是毫无意义的报告KME它的值。
参数:greyLabel
label that labels the grey module.
标签,标签的灰色模块。
Details
详细信息----------Details----------
This is a convenience function that calculates module eigengene significances (i.e., correlations of module eigengenes with a given trait) across all sets in a multi-set analysis. Also returned are p-values, Z scores, numbers of present (i.e., non-missing) observations for each significance, and optionally the q-values (false discovery rates) corresponding to the p-values.
这是一个方便的功能,计算模块eigengene的意义(即,模块的特征基因的相关性与一个给定的性状在多集的分析)在所有集。也返回的是p-值,Z分数,本(即,非缺失)观测的每个的意义,和任选的q值(假发现率)对应的p值的数字。
The function corAndPvalueFnc is currently is expected to accept arguments x (gene expression profiles) and y (eigengene expression profiles). Any additional arguments can be passed via corOptions.
函数corAndPvalueFnc目前预计接受参数x(基因的表达谱)和y(eigengene表达谱)。通过corOptions可以通过任何额外的参数。
The function corAndPvalueFnc should return a list which at the least contains (1) a matrix of associations of genes and eigengenes (this component should have the name given by corComponent), and (2) a matrix of the corresponding p-values, named "p" or "p.value". Other components are optional but for full functionality should include (3) nObs giving the number of observations for each association (which is the number of samples less number of missing data - this can in principle vary from association to association), and (4) Z giving a Z static for each observation. If these are missing, nObs is calculated in the main function, and calculations using the Z statistic are skipped.
的功能corAndPvalueFnc应该返回一个列表,其中在至少包含(1)的矩阵的关联的基因和特征基因(此组件应具有由corComponent),和(2)的矩阵给出的名称相应的p-值,命名为“p”或“p.value”。其他组件是可选的,但(3)的全部功能应该包括nObs给予观测值的数量为每个关联(这是的样本数量丢失的数据的数目少 - 在原则上,这可以从关联的关联而异),及(4)Z给予对于每个观测的Z静态。如果缺少这些,nObs计算的主要功能,并跳过使用的Z统计量的计算。
值----------Value----------
A list containing the following components. Each component is a matrix in which the rows correspond to module eigengenes and columns to data sets. Row and column names are set appropriately.
含有下列成分的列表。每个组件是一个矩阵,其中的行相对应的模块的特征基因和列的数据集。设置适当的行和列名。
参数:eigengeneSignificance
Module eigengene significance.
意义模块eigengene。
参数:p.value
p-values (returned by corAndPvalueFnc).
P-的值(返回corAndPvalueFnc)。
参数:q.value
q-values corresponding to the p-values above. Only returned in input getWvalues is TRUE.
Q值,对应到p上述值。仅输入getWvalues返回是TRUE。
参数:Z
Z statistics (if returned by corAndPvalueFnc).
Z统计量(如果返回corAndPvalueFnc)。
参数:nObservations
Number of non-missing observations in each correlation/p-value.
非缺失在每个相关的观测/ p-值数目。
(作者)----------Author(s)----------
Peter Langfelder
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|