consensusDissTOMandTree(WGCNA)
consensusDissTOMandTree()所属R语言包:WGCNA
Consensus clustering based on topological overlap and hierarchical clustering
基于拓扑重叠和分层聚类的共识聚类
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function makes a consensus network using all of the default values in the WGCNA library. Details regarding how consensus modules are formed can be found here: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/Consensus-NetworkConstruction-man.pdf
此功能可以使一个共识网使用默认值在WGCNA库中的所有。关于如何形成共识模块的详细信息可以在这里找到:
用法----------Usage----------
consensusDissTOMandTree(multiExpr, softPower, TOM = NULL)
参数----------Arguments----------
参数:multiExpr
Expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data. Rows correspond to samples and columns to genes or probes. Two or more sets of data must be included and adjacencies cannot be used.
表达数据在多集的格式(见checkSets)。一个向量的列表,每一个组。每一组必须包含一个组件的数据,其中包含的表达数据。行对应基因探针的样品和列。必须包含两个或两个以上的数据集,并邻接不能使用。
参数:softPower
Soft thresholding power used to make each of the networks in multiExpr.
软阈值功率,使每一个网络中multiExpr。
参数:TOM
A LIST of matrices holding the topological overlap corresponding to the sets in multiExpr, if they have already been calculated. Otherwise, keep TOM set as NULL (default), and TOM similarities will be calculated using the WGCNA defaults. If inputted, this variable must be a list with each entree a TOM corresponding to the same entries in multiExpr.
矩阵的拓扑的重叠的相应的套multiExpr,如果他们已经计算的列表。否则,继续TOM设置为NULL(默认),将计算的使用的WGCNA的默认TOM相似之处。如果输入时,此变量必须是一个列表,每个主菜一个TOM对应于相同的条目在multiExpr。
值----------Value----------
参数:consensusTOM
The TOM difference matrix (1-TOM similarity) corresponding to the consensus network.
TOM差分矩阵(1 - 相似度)TOM相应的共识网络。
参数:consTree
Returned value is the same as that of hclust: An object of class hclust which describes the tree produced by the clustering process. This tree corresponds to the dissimilarity matrix consensusTOM.
返回的值是相同的因为这的hclust:类hclust描述由聚类过程产生的树的一个目的。这棵树对应的相异矩阵consensusTOM。
(作者)----------Author(s)----------
Peter Langfelder, Steve Horvath, Jeremy Miller
参考文献----------References----------
参见----------See Also----------
blockwiseConsensusModules
blockwiseConsensusModules
实例----------Examples----------
# Example consensus network using two simulated data sets[例如共识,网络使用两个模拟数据集]
set.seed = 100
MEturquoise = sample(1:100,50)
MEblue = sample(1:100,50)
MEbrown = sample(1:100,50)
MEyellow = sample(1:100,50)
MEgreen = sample(1:100,50)
ME = data.frame(MEturquoise, MEblue, MEbrown, MEyellow, MEgreen)
dat1 = simulateDatExpr(ME,300,c(0.2, 0.10, 0.10, 0.10, 0.10, 0.2), signed=TRUE)
dat2 = simulateDatExpr(ME,300,c(0.18, 0.11, 0.11, 0.09, 0.11, 0.23),signed=TRUE)
multiExpr = list(S1=list(data=dat1$datExpr),S2=list(data=dat2$datExpr))
softPower=8
consensusNetwork = consensusDissTOMandTree(multiExpr, softPower)
plotDendroAndColors(consensusNetwork$consTree, cbind(labels2colors(dat1$allLabels),
labels2colors(dat2$allLabels)),c("S1","S2"), dendroLabels=FALSE)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|