找回密码
 注册
查看: 648|回复: 0

R语言 WGCNA包 chooseTopHubInEachModule()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 21:08:49 | 显示全部楼层 |阅读模式
chooseTopHubInEachModule(WGCNA)
chooseTopHubInEachModule()所属R语言包:WGCNA

                                         Chooses the top hub gene in each module
                                         选择最佳的轮毂在每个模块中的基因

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

chooseTopHubInEachModule returns the gene in each module with the highest connectivity, looking at all genes in the expression file.
chooseTopHubInEachModule返回的基因在每个模块具有最高连通,在所有的基因的表达文件中。


用法----------Usage----------


chooseTopHubInEachModule(datExpr, colorh, omitColors = "grey", power = 2, type = "signed", ...)



参数----------Arguments----------

参数:datExpr
Gene expression data with rows as samples and columns as genes.  
基因表达数据作为样本的行和列的基因。


参数:colorh
The module assignments (color vectors) corresponding to the rows in datExpr.  
该模块分配(颜色矢量)对应行datExpr。


参数:omitColors
All colors in this character vector (default is "grey") are ignored by this function.  
这个人物矢量(默认是“灰色”)中的所有颜色都忽略了这个功能。


参数:power
Power to use for the adjacency network (default = 2).  
功率,使用邻接网络(默认为2)。


参数:type
What type of network is being entered.  Common choices are "signed" (default) and "unsigned".  With "signed" negative correlations count against, whereas with "unsigned" negative correlations are treated identically as positive correlations.  
什么类型的网络被输入。常见的选择“签名”(默认)和“无符号”。 “签名”的负相关关系计算在“无符号”的负相关关系,而被视为相同的正相关关系。


参数:...
Any other parameters accepted by the *adjacency* function  
*邻接*函数所接受的任何其他参数


值----------Value----------

Both functions output a character vector of genes, where the genes are the hub gene picked for each module, and the names correspond to the module in which each gene is a hub.
这两个函数的输出拾取字符的基因的向量,其中的基因是轮毂基因为每个模块中,名称对应的模块,其中每一个基因是一个枢纽。


(作者)----------Author(s)----------



Jeremy Miller




实例----------Examples----------


## Example: first simulate some data.[#示例:首先模拟了一些数据。]

MEturquoise = sample(1:100,50)
MEblue      = sample(1:100,50)
MEbrown     = sample(1:100,50)
MEyellow    = sample(1:100,50)
MEgreen     = c(MEyellow[1:30], sample(1:100,20))
MEred            = c(MEbrown [1:20], sample(1:100,30))
MEblack            = c(MEblue  [1:25], sample(1:100,25))
ME     = data.frame(MEturquoise, MEblue, MEbrown, MEyellow, MEgreen, MEred, MEblack)
dat1   = simulateDatExpr(ME,300,c(0.2,0.1,0.08,0.051,0.05,0.042,0.041,0.3), signed=TRUE)
TOM1   = TOMsimilarityFromExpr(dat1$datExpr, networkType="signed")
colnames(TOM1) <- rownames(TOM1) <- colnames(dat1$datExpr)
tree1 <- tree2 <- flashClust(as.dist(1-TOM1),method="average")
colorh = labels2colors(dat1$allLabels)
hubs    = chooseTopHubInEachModule(dat1$datExpr, colorh)
hubs


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 07:35 , Processed in 0.020915 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表