找回密码
 注册
查看: 435|回复: 0

R语言 wavethresh包 CWCV()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 17:16:59 | 显示全部楼层 |阅读模式
CWCV(wavethresh)
CWCV()所属R语言包:wavethresh

                                        C Wavelet Cross-validation
                                         Ç小波交叉验证

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Two-fold wavelet shrinkage cross-validation (in C)
两方面的小波收缩交叉验证(C语言)


用法----------Usage----------


CWCV(ynoise, ll, x = 1:length(ynoise), filter.number = 10, family =
        "DaubLeAsymm", thresh.type = "soft", tol = 0.01, verbose = 0,
        plot.it = TRUE, interptype = "normal")




参数----------Arguments----------

参数:ynoise
A vector of dyadic (power of two) length that contains the noisy data that you wish to apply wavelet shrinkage by cross-validation to.
矢(幂)的矢量长度包含噪声的数据,你想申请小波收缩交叉验证。


参数:ll
The primary resolution that you wish to assume. No wavelet coefficients that are on coarser scales than ll will be thresholded.
你愿意承担的主要决议。没有将阈值的小波系数是粗糙的尺度比LL。


参数:x
This function is capable of producing informative plots. It can be useful to supply the x values corresponding to the ynoise values. Further this argument is returned by this function which can be useful for later processors.
此功能是能够生产的信息图。对应的ynoise值的x值,它可以是有用供货。此外,这种说法是返回的功能,可用于以后的处理器。


参数:filter.number
This selects the smoothness of wavelet that you want to perform wavelet shrinkage by cross-validation.
这将选择要通过交叉验证进行小波收缩小波的平滑度。


参数:family
specifies the family of wavelets that you want to use. The options are "DaubExPhase" and "DaubLeAsymm".
指定要使用的小波家庭。的选项“DaubExPhase”和“DaubLeAsymm”。


参数:thresh.type
this option specifies the thresholding type which can be "hard" or "soft".
此选项指定的阈值类型,可以是“硬”或“软”。


参数:tol
this specifies the convergence tolerance for the cross-validation optimization routine (a golden section search).
指定交叉验证优化程序(黄金分割搜索)的收敛公差。


参数:verbose
Controls the printing of "informative" messages whilst the computations progress. Such messages are generally annoying so it is turned off by default
控制打印的“信息”的消息,而计算的进展。这样的消息一般都是讨厌的,所以它在默认情况下是关闭的


参数:plot.it
If this is TRUE then plots of the universal threshold (used to obtain an upper bound on the cross-validation threshold) reconstruction and the resulting cross-validation estimate are produced.
如果这是真的,然后绘制的通用阈值(用来获取上的交叉验证阈值的上限)重建和由此产生的交叉验证估计。


参数:interptype
Can take two values noise or normal. This option controls how cross-validation compares the estimate formed by leaving out the data with the "left-out" data. If interptype="noise" then two noisy values are averaged to compare with the estimated curve in between, otherwise if interptype="normal" then the curve estimate is averaged either side of a noisy left-out point.
可以取两个值的噪声或正常。该选项控制交叉验证比较所形成的“左”的数据留出的数据估计。如果interptype =“噪声”然后两个嘈杂的值的平均值,以比较的估计曲线之间,否则如果interptype =“正常”,然后曲线估计平均嘈杂的左侧出点两侧。


Details

详细信息----------Details----------

Compute the two-fold cross-validated wavelet shrunk estimate given the noisy data ynoise according to the description given in Nason, 1996.
计算缩水的2倍交叉验证小波估计喧闹的数据ynoise根据1996年在利晨给出的描述。

You must specify a primary resolution given by ll. This must be specified individually on each data set and can itself be estimated using cross-validation (although I haven't written the code to do this).
您必须指定一个主要的ll决议案。必须单独指定对每个数据集本身就可以使用交叉验证估计(虽然我不写代码,做到这一点)。

Note. The two-fold cross-validation method performs very badly if the input data is correlated. In this case I would advise using the methods proposed in Donoho and Johnstone, 1995 or Johnstone and Silverman, 1997 which can be carried out in WaveThresh using the threshold function using the policy="sure" option.
请注意。如果输入的数据是相关的2倍交叉验证方法进行得很厉害。在这种情况下,我会奉劝在使用threshold函数使用policy="sure"选项的使用方法提出了Donoho和Johnstone,1995年或约翰斯通和Silverman,1997年进行了WaveThresh。


值----------Value----------

A list with the following components
以下组件列表

<table summary="R valueblock"> <tr valign="top"><td>x</td> <td> This is just the x that was input. It gets passed through more or less for convenience for the user.</td></tr> <tr valign="top"><td>ynoise</td> <td> A copy of the input ynoise noisy data.</td></tr> <tr valign="top"><td>xvwr</td> <td> The cross-validated wavelet shrunk estimate.</td></tr> <tr valign="top"><td>yuvtwr</td> <td> The universal thresholded version (note this is merely a starting point for the cross-validation algorithm. It should not be ta    ken seriously as an estimate. In particular its estimate of variance is likely to be inflated.) </td></tr> <tr valign="top"><td>xvthresh</td> <td> The cross-validated threshold</td></tr> <tr valign="top"><td>xvdof</td> <td> The number of non-zero coefficients in the cross-validated shrunk wavelet object (which is not returned).</td></tr> <tr valign="top"><td>uvdof</td> <td> The number of non-zero coefficients in the universal threshold shrunk wavelet object (which also is not returned)</td></tr> <tr valign="top"><td>xkeep</td> <td> always returns NULL!</td></tr> <tr valign="top"><td>fkeep</td> <td> always returns NULL!</td></tr>
<table summary="R valueblock"> <tr valign="top"> <TD>x</ TD> <td>这仅仅是x的输入。它被传递更多或更少的方便的用户。</ TD> </ TR> <tr valign="top"> <TD> ynoise </ TD> <td>一个副本输入ynoise噪声数据。</ TD> </ TR> <tr valign="top"> <TD>xvwr </ TD> <TD>交叉验证小波萎缩的估计。</ TD> </ TR> <tr valign="top"> <TD> yuvtwr </ TD> <TD>通用阈值的版本(请注意,这仅仅是一个起点交叉验证算法。它不应该是达根严重的估计,特别是其方差的估计是可能被夸大了。)</ TD> </ TR> <tr valign="top"> <TD> xvthresh </ td> <td>使用交叉 - 验证阈值</ TD> </ TR> <tr valign="top"> <TD>xvdof </ TD> <TD>非零系数的交叉验证缩水小波对象的数量(即不退还)。</ TD> </ TR> <tr valign="top"> <TD>uvdof </ TD> <TD>的数量非零系数的通用阈值萎缩小波对象(这也不会返回)</ TD> </ TR> <tr valign="top"> <TD>xkeep </ TD> <TD>总是返回NULL!</ TD> </ TR> <tr valign="top"> <TD>fkeep </ TD> <TD>总是返回NULL!</ TD> </ TR>

</table>
</ TABLE>


RELEASE----------RELEASE----------

Version 3.0 Copyright Guy Nason 1994
3.0版版权盖利晨1994年


注意----------Note----------

Plots of the universal and cross-validated shrunk estimates might be plotted if plot.it=TRUE.
图的普及和交叉验证的缩水估计可能会绘制如果plot.it=TRUE.


(作者)----------Author(s)----------


G P Nason



参见----------See Also----------

threshold. threshold.wd.
threshold。 threshold.wd。


实例----------Examples----------


#[]
# This function is best used via the policy="cv" option in[此功能是最好的政策,通过使用“CV”选项,]
# the threshold.wd function.[功能的threshold.wd。]
# See examples there.[参见例子。]
#[]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 16:35 , Processed in 0.024216 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表