pattern.sim(voronoi)
pattern.sim()所属R语言包:voronoi
Simulate an inhomogeneous Poisson process
模拟非齐次泊松过程。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Draw simulations from one of five pre-defined Poisson point process models. Parameters for thre of the models - 'homogeneous', 'linear' and 'quadratic' - can be adjusted by the user. For the two other models - 'moon', and 'ridge' - the user may specify the maximum intensity, but cannot change any other features of the model. All simulations are on the unit square.
绘制5个预定义的泊松点过程模型的模拟。 THRE的车型参数 - 'homogeneous','linear'和'quadratic' - 可以由用户调整。对于其他两个模型 - 'moon','ridge' - 用户可以指定的最大强度,但不能改变任何其他功能的模型。所有的模拟单位面积上的。
用法----------Usage----------
pattern.sim(r=NULL, a=NULL, b=NULL, type=c('homogeneous', 'linear',
'quadratic', 'moon', 'ridge'), pts=NULL)
参数----------Arguments----------
参数:r
The maximum intensity of the process, specified on the log scale.
的过程中的最大强度,上指定log刻度。
参数:a
Parameter used to control the increasing intensity from left to right when type is 'linear'. When type='quadratic', controls the how strongly peaked the intensity is from left to right.
参数用于控制强度的增加,由左到右,当type是'linear',。当type='quadratic',控制多么强烈,达到峰值的强度是由左到右。
参数:b
Parameter used to control the increasing intensity from bottom to top when type is 'linear'. When type='quadratic', controls the how strongly peaked the intensity is from bottom to top.
参数用于控制程度的增加,从底部到顶部时type是'linear'。当type='quadratic',控制了多么强烈的见顶的强度是从底部到顶部。
参数:type
One of five Poisson point process models: "homogeneous", "linear", "quadratic", "moon", or "ridge".
五Poisson点过程模型之一:"homogeneous","linear","quadratic","moon"或"ridge"。
参数:pts
An m-by-2 matrix of points, where column 1 represents the horizontal location of the points and column 2 the vertical location. If pts is specified, pattern.sim returns an m-by-3 matrix; the first two columns are identical to the input pts object and the third column is the intensity at those locations for the model.
一个m--2点的矩阵,其中列1表示的点的水平位置和第2列的垂直位置。如果pts指定,pattern.sim返回m的3矩阵的前两列是相同的输入pts对象和第三列是的强度在这些地方的模型。
Details
详细信息----------Details----------
Point patterns are simulated by first drawing a sample from a homogeneous Poisson point process with intensity equal to the user-specified maximum, then thinning according to the desired model. The models for type='linear' and 'quadratic' are actually log-linear and log-quadratic. The 'ridge' model includes a tall ridge along the western side of the unit square, similar to that used by Barr and Schoenberg (2011). The 'moon' type model includes a ridge, peak and crescent, similar to that used by Heikkinen and Arjas (1998) and Barr and Schoenberg (2011).
点图案是先绘制样品从一个齐次泊松点过程相等于用户指定的最大的强度,然后根据所需的模型减薄模拟。该机型type='linear'和'quadratic'实际上是对数线性和二次log。 'ridge':模型包括一个高大的脊沿西侧的单位正方形,类似的由Barr和勋伯格(2011)。 'moon'型模型包括一个山脊,峰形和新月形,类似使用Heikkinen和Arjas(1998年)和Barr和勋伯格(2011)。
值----------Value----------
An n-by-2 matrix. Each row represents a point, and each column represents a dimension. If pts is specified, then an m-by-3 matrix; the first two columns are identical to the input pts object and the third column is the intensity at those locations for the model.
n2矩阵。每一行代表一个点,每一列代表一个维度。如果pts指定,然后m的3矩阵的前两列是相同的输入pts对象,第三列是在那些强度模型位置。
(作者)----------Author(s)----------
Christopher D. Barr
参考文献----------References----------
Barr CD and Schoenberg FP (2011). On the Voronoi estimator for the intensity of an inhomogeneous planar Poisson process. Biometrika, 97(4), 977-984.
Heikkinen J and Arjas E (1998). Non-parametric Bayesian estimation of a spatial Poisson intensity. Scandinavian Journal of Statistics, 25, 435-50.
参见----------See Also----------
ve, centroidal, bw
ve,centroidal,bw
实例----------Examples----------
par(mfrow = c(2,2))
plot(pattern.sim(type = "linear"), main = "linear")
plot(pattern.sim(type = "quadratic"), main = "quadratic")
plot(pattern.sim(type = "moon"), main = "moon")
plot(pattern.sim(type = "ridge"), main = "ridge")
for(i in 1:4) {
plot(pattern.sim(a = 2*i - 1, b = 11 - 2*i, type = "linear"),
main = paste("a = ", 2*i - 1, ", ", "b = ", 11 - 2*i),
pch = 20, cex = 0.2)
}
for(i in 1:4) {
plot(pattern.sim(a = 2*i - 1, b = 11 - 2*i, type = "quadratic"),
main = paste("a = ", 2*i - 1, ", ", "b = ", 11 - 2*i),
pch = 20, cex = 0.2)
}
for(i in 1:4) {
plot(pattern.sim(i + 6, type = "moon"),
main = paste("r = ", i + 6), pch = 20, cex = 0.2)
}
for(i in 1:4) {
plot(pattern.sim(i + 6, type = "ridge"),
main = paste("r = ", i + 6), pch = 20, cex = 0.2)
}
n <- 101
x <- seq(0, 1, length = n)
y <- seq(0, 1, length = n)
xy <- expand.grid(x, y)
r <- 7
a1 <- pattern.sim(r, type = "linear", pts = xy)
a2 <- pattern.sim(r, type = "quadratic", pts = xy)
a3 <- pattern.sim(r, type = "moon", pts = xy)
a4 <- pattern.sim(r, type = "ridge", pts = xy)
cols <- gray(seq(1, 0, len = 1500))
image(matrix(a1[,3], n, n), col = cols, main = "linear")
image(matrix(a2[,3], n, n), col = cols, main = "quadratic")
image(matrix(a3[,3], n, n), col = cols, main = "moon")
image(matrix(a4[,3], n, n), col = cols, main = "ridge")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|