vfobject(visualFields)
vfobject()所属R语言包:visualFields
visualField objects
visualField对象
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This is the main object of the visualFields package. It is essentially a dataframe, but with a fixed number of columns (with pre-determined names) for information about the subject and test data and a variable number of columns for the perimetry results. These can be the sensitivities, or total-deviation values, or pattern-deviation values obtained from standard automatic perimetry (SAP), frequency-doubling perimetry (FDP), or any other perimetry device. (The number of columns for tested locations is variable as is different for different testing patterns, 24-2, 30-2, 10-2, etc.) Mean deviation, Pattern-standard deviation, vfi, etc are stored too in a visualField-type object
这是visualFields包的主要对象。它实质上是一个数据框,但具有固定数目的列(具有预先确定的名称)的信息,关于主体和测试数据和一个可变数目的视野检查结果的列。这些可以的敏感性,或总偏差的值,或从标准自动视野(SAP),倍频视野(FDP),或任何其他的视野检查装置获得的图案偏差值。 (测试的位置的列的数目是可变的,因为不同的测试图案,24-2,30-2,10-2,等)是不同的平均偏差,模式的标准偏差,VFI等也被存储在visualField类型的对象
Details
详细信息----------Details----------
The fixed columns of the visualField object with information about subject and test are:
固定列的visualField对象的学科和测试的信息:
The reminder of the columns can be different things. For threshold sensitivity values, and total-deviation and pattern-deviation values, and their corresponding probability maps, they are:
提醒的列可以是不同的东西。对于阈值的灵敏度值,和总偏差和图案的偏差值,以及其对应的概率映射,它们是:
For statistical values of the visual-fields results (mean deviation, pattern standard deviation, and others) and their corresponding probability mapped value, they are:
有关的视觉场结果(平均偏差,图案的标准偏差,以及其他的)和它们相应的概率映射值的统计值,它们分别是:
For visual field index (VFI) value and the corresponding probability mapped value, they are:
视野指数(VFI)值和相应的概率映射的值,它们分别是:
(作者)----------Author(s)----------
Ivan Marin-Franch <imarinfr@indiana.edu>
参见----------See Also----------
vfsettings
vfsettings
实例----------Examples----------
# DO NOT EXECUTE[不执行]
### ALL THESE HAVE THE SAME STRUCTURE WITH FIXED COLUMS id .. spause and then L1 .. L54 BUT DIFFERENT DATA[##这一切都相同的结构与固定COLUMS的ID .. spause,然后L1 .. L54但不同的数据]
# one can load sensitivities using loadvfcsv or loadvfxml the data so[可以加载敏感性使用loadvfcsv或loadvfxml的数据,因此]
# vf <- loadvfcsv( filename = "foo.csv", , patternMap = saplocmap$p24d2 )[VF < - loadvfcsv(文件名=的“foo.csv”,次,patternMap = saplocmap $ p24d2)]
# calculate total deviation values using \code{\link{visualFields}} normative values for SAP SITAS 24-2 (and Goldman size III stimulus)[计算总使用\代码{\的链接{visualFields}}规范性的值为SAP SITAS的24-2(III)和高盛(Goldman大小刺激的偏差值)]
# td <- tdval( vf )[TD < - tdval(VF)]
# calculate pattern deviation values using total deviation values SAP SITAS 24-2 (and Goldman size III stimulus)[计算总偏差值SAP SITAS 24-2,()和高盛(Goldman大小III刺激的模式偏差值)]
# pd <- tdval( td )[PD < - tdval(TD)]
# OR[或]
# pd <- tdval( tdval( vf ) )[PD < - tdval(tdval(VF))]
# calculate total deviation proabiliby maps[计算总偏差proabiliby图]
# tdp <- tdpmap( td )[TDP < - tdpmap(TD)]
# calculate pattern deviation proabiliby maps[计算模式偏差proabiliby图]
# pdp <- pdpmap( pd )[PDP(PD)< - pdpmap]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|