找回密码
 注册
查看: 608|回复: 0

R语言 VineCopula包 RVineMLE()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 16:11:55 | 显示全部楼层 |阅读模式
RVineMLE(VineCopula)
RVineMLE()所属R语言包:VineCopula

                                        Maximum likelihood estimation of an R-vine copula model
                                         最大似然估计的R-藤Copula模型

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function calculates the maxiumum likelihood estimate (MLE) of the R-vine copula model parameters using sequential estimates as initial values (if not provided).
此函数计算maxiumum的似然估计(MLE)的R-藤Copula模型参数的顺序估计为初始值(如果未提供)。


用法----------Usage----------


RVineMLE(data, RVM, start=RVM$par, start2=RVM$par2, maxit=200, max.df=30,
         max.BB=list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1)),
         grad=FALSE, hessian=FALSE, se=FALSE, ...)



参数----------Arguments----------

参数:data
An N x d data matrix (with uniform margins).
一个N×d数据矩阵(均匀的利润)。


参数:RVM
An RVineMatrix object including the structure and the pair-copula families and parameters (if known).
RVineMatrix对象的结构和对Copula的家庭,和参数(如果知道的话)。


参数:start
Lower triangular d x d matrix with zero diagonal entries with starting values for the pair-copula parameters (optional; otherwise they are calculated via <br> RVineSeqEst; default: start = RVM$par).
下三角DXD零矩阵对角元素的初始值对Copula函数的参数(可选;否则,他们通过计算参考RVineSeqEst;默认:start = RVM$par)。


参数:start2
Lower triangular d x d matrix with zero diagonal entries with starting values for the second parameters of pair-copula families with two parameters (optional; otherwise they are calculated via RVineSeqEst; default: start2 = RVM$par2).
下三角DXD零矩阵对角线项目开始的对Copula的家庭的第二个参数的值有两个参数(可选;否则,他们通过计算RVineSeqEst;默认:start2 = RVM$par2)。


参数:maxit
The maximum number of iteration steps (optional; default: maxit = 500).
的最大迭代步数(可选,默认:maxit = 500)。


参数:max.df
Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula (default: max.df = 30; for more details see BiCopEst).
数字;上界估计的程度自由的t-Copula函数的参数(默认值:max.df = 30;更多详细信息,请参阅BiCopEst)。


参数:max.BB
List; upper bounds for the estimation of the two parameters (in absolute values) of the BB1, BB6, BB7 and BB8 copulas <br> (default: max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1))).
名单;(绝对值),BB1,BB6,BB7和BB8 Copula函数的两个参数的估计上限为参考(默认:max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1)))。


参数:grad
If RVM$family only contains one parameter copula families or the t-copula the analytical gradient can be used for maximization of the log-likelihood (see RVineGrad; default: grad = FALSE).
如果RVM家庭只包含一个参数Copula的家庭或T-Copula函数的解析梯度可用于最大化对数似然(见RVineGrad;默认:grad = FALSE)。


参数:hessian
Logical; whether the Hessian matrix of parameter estimates is estimated (default: hessian = FALSE). Note that this is not the Hessian Matrix calculated via RVineHessian but via finite differences.
逻辑是否Hessian矩阵参数估计值的估计(默认:hessian = FALSE)。请注意,这不是Hessian矩阵计算,通过RVineHessian但通过有限的差异。


参数:se
Logical; whether standard errors of parameter estimates are estimated on the basis of the Hessian matrix (see above; default: se = FALSE).
逻辑,无论参数估计值的标准误差估计的Hessian矩阵的基础上(见上文;默认:se = FALSE)。


参数:...
Further arguments for optim (e.g. factr controls the convergence of the "L-BFGS-B" method, or trace, a non-negative integer, determines if tracing information on the progress of the optimization is produced.) <br> For more details see the documentation of optim.
进一步的论据为optim(如:factr控制的融合“L-BFGS-B”的方法,或trace,一个非负整数,确定跟踪信息的进展的优化。)<BR>有关详细信息,请参阅文档optim。


值----------Value----------


参数:RVM
RVineMatrix object with the calculated parameters stored in RVM$par and RVM$par2.
RVineMatrix和RVM$parRVM$par2对象存储与计算的参数。


参数:value
Optimized log-likelihood value corresponding to the estimated pair-copula parameters.
优化的对数似然值相对应的估计对系词参数。


参数:convergence
An integer code indicating either successful convergence (convergence = 0) or an error:<br>  1 = the iteration limit maxit has been reached <br> 51 = a warning from the "L-BFGS-B" method; see component message for further details <br> 52 = an error from the "L-BFGS-B" method; see component message for further details
整数代码表示不管是成功的融合(convergence = 0)或错误:<BR>的1=迭代限制maxit已经达到<BR> 51=警告“L-BFGS-B”的方法,请参阅组件message的进一步详情<BR>52=“L-BFGS-B”的方法错误;查看组件message 更多详细信息


参数:message
A character string giving any additional information returned by optim, or NULL.  
optim或NULL返回一个字符串提供任何额外的信息。


参数:counts
A two-element integer vector giving the number of calls to fn and gr respectively.  This excludes those calls needed to compute the Hessian, if requested, and any calls to fn to compute a finite-difference  approximation to the gradient.
两个元件的整数向量fn和gr分别发出呼叫的数量。这不包括那些需要计算Hessian的,如果要求的呼叫,并调用fn计算的有限差分近似的渐变。


参数:hessian
If hessian = TRUE, the Hessian matrix is returned. Its calculation is on the basis of finite differences (output of optim).
如果hessian = TRUE,Hessian矩阵,则返回。它的计算是有限差分的基础上(optim)的输出。


参数:se
If se = TRUE, the standard errors of parameter estimates are returned. Their calculation is based on the Hesse matrix (see above).
如果se = TRUE,返回的参数估计值的标准误差。他们的计算基础上的的Hesse矩阵(见上文)。


注意----------Note----------

RVineMLE uses the L-BFGS-B method for optimization. <br> If the analytical gradient is used for maximization, computations may be up to 10 times faster than using finite differences.
RVineMLE使用L-BFGS-B方法进行优化。如果分析梯度用于最大化的<BR>,计算可能高达10倍的速度比用有限差分法。


(作者)----------Author(s)----------


Ulf Schepsmeier, Jeffrey Dissmann



参考文献----------References----------

Selecting and estimating regular vine copulae and application to financial returns. Submitted for publication. http://mediatum.ub.tum.de/node?id=1079277
Is there significant time-variation in multivariate dependence? In preparation. http://de.arxiv.org/abs/1205.4841.

参见----------See Also----------

RVineSeqEst, RVineStructureSelect, RVineMatrix, RVineGrad, <br>
RVineSeqEst,RVineStructureSelect,RVineMatrix,RVineGrad,参考


实例----------Examples----------


# define 5-dimensional R-vine tree structure matrix[定义5维的R-葡萄树结构矩阵]
Matrix = c(5,2,3,1,4,0,2,3,4,1,0,0,3,4,1,0,0,0,4,1,0,0,0,0,1)
Matrix = matrix(Matrix,5,5)

# define R-vine pair-copula family matrix[定义R-藤对Copula的家庭矩阵]
family = c(0,1,3,4,4,0,0,3,4,1,0,0,0,4,1,0,0,0,0,3,0,0,0,0,0)
family = matrix(family,5,5)

# define R-vine pair-copula parameter matrix[定义R-藤对Copula函数的参数矩阵]
par = c(0,0.2,0.9,1.5,3.9,0,0,1.1,1.6,0.9,0,0,0,1.9,0.5,
        0,0,0,0,4.8,0,0,0,0,0)
par = matrix(par,5,5)

# define second R-vine pair-copula parameter matrix[定义第二个R-藤对Copula函数的参数矩阵]
par2 = matrix(0,5,5)

# define RVineMatrix object[定义RVineMatrix对象]
RVM = RVineMatrix(Matrix=Matrix,family=family,par=par,par2=par2,
                  names=c("V1","V2","V3","V4","V5"))

# simulate a sample of size 300 from the R-vine copula model[从R-藤copula模型,模拟样品的尺寸为300]
simdata = RVineSim(300,RVM)

# compute the MLE[计算MLE]
mle = RVineMLE(simdata,RVM,grad=TRUE)
mle$RVM

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 06:29 , Processed in 0.028467 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表