找回密码
 注册
查看: 526|回复: 0

R语言 VineCopula包 BiCopLambda()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 16:09:50 | 显示全部楼层 |阅读模式
BiCopLambda(VineCopula)
BiCopLambda()所属R语言包:VineCopula

                                        Lambda-function (plot) for bivariate copula data
                                         λ-二元Copula的数据的函数(图)

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function plots the lambda-function of given bivariate copula data.
此功能的lambda函数给定的二元Copula的数据绘制。


用法----------Usage----------


BiCopLambda(u1=NULL, u2=NULL, family="emp", par=0, par2=0,
            PLOT=TRUE, ...)



参数----------Arguments----------

参数:u1,u2
Data vectors of equal length with values in [0,1] (default: u1 and u2 = NULL).
数据向量长度相等的值在[0,1](默认:u1和u2 = NULL)。


参数:family
An integer defining the bivariate copula family or indicating the empirical lambda-function: <br> "emp" = empirical lambda-function (default) <br> 1 = Gaussian copula; the theoretical lambda-function is simulated (no closed formula available) <br> 2 = Student t copula (t-copula); the theoretical lambda-function is simulated (no closed formula available) <br> 3 = Clayton copula <br> 4 = Gumbel copula <br> 5 = Frank copula <br> 6 = Joe copula <br>  7 = BB1 copula <br> 8 = BB6 copula <br> 9 = BB7 copula <br> 10 = BB8 copula
一个整数定义二元Copula的家庭的或经验的lambda函数表示:参考"emp" =经验的lambda函数(默认值)参考1=高斯Copula函数的lambda函数的理论模拟(没有封闭的公式)<BR>2学生t Copula函数(T-Copula函数理论的lambda)功能是模拟(没有封闭的配方)<BR>3=克莱顿系词< >4= Gumbel分布Copula的参考5=弗兰克·系词参考6=乔系词参考7= BB1 Copula的参考8 = BB6 Copula的参考9= BB7系词参考10= BB8系词


参数:par
Copula parameter; if the empirical lambda-function is chosen, par = NULL or 0 (default).
Copula函数参数,如果经验的lambda功能选择,par = NULL或0(默认)。


参数:par2
Second copula parameter for t-, BB1, BB6, BB7 and BB8 copulas (default: par2 = 0).
第二Copula函数的参数T-BB1,BB6,BB7和BB8 Copula函数的(默认:par2 = 0)。


参数:PLOT
Logical; whether the results are plotted. If PLOT = FALSE, the values <br> empLambda and/or theoLambda are returned (see below; default: PLOT = TRUE).
逻辑;结果是否绘制。如果PLOT = FALSE“的值<BR> empLambda和/或theoLambda返回(见下文;默认:PLOT = TRUE)。


参数:...
Additional plot arguments.
其他图参数。


值----------Value----------


参数:empLambda
If the empirical lambda-function is chosen and PLOT=FALSE, a vector of the empirical lambda's is returned.
如果经验选择的lambda函数和PLOT=FALSE,一个向量的实证lambda的返回。


参数:theoLambda
If the theoretical lambda-function is chosen and PLOT=FALSE, a vector of the theoretical lambda's is returned.
如果理论的lambda功能选择和PLOT=FALSE,一个向量的理论lambda的返回。


注意----------Note----------

The &lambda;-function is characteristic for each bivariate copula family and defined by Kendall's distribution function K:
&lambda;功能的特点是为每个二元Copula的家庭和肯德尔的分布函数的定义K:

with


For Archimedean copulas one has the following closed form expression in terms of the generator function &phi; of the copula C_{&theta;}:
阿基米德Copula函数之一,具有以下的发电机功能的封闭形式表达的&phi;的Copula函数C_{&theta;}:

where &phi;' is the derivative of &phi;. For more details see Genest and Rivest (1993) or Schepsmeier (2010).
&phi;'是衍生工具的&phi;。有关详细信息,请参阅Genest和Rivest(1993),或Schepsmeier(2010年)。

For the bivariate Gaussian and t-copula no closed form expression for the theoretical &lambda;-function exists.  Therefore it is simulated based on samples of size 1000. For all other implemented copula families there are closed form expressions available.
对于二元高斯和t-Copula函数没有封闭的形式表达存在的理论&lambda;功能。因此,它是模拟的,根据样品的大小为1000。对于所有其他实施Copula的家庭是封闭的形式表达。

The plot of the theoretical &lambda;-function also shows the limits of the &lambda;-function corresponding to Kendall's tau =0  and Kendall's tau =1 (&lambda;=0).
该图的理论&lambda;功能的限制的&lambda;功能Kendall的tau =0和Kendall的tau相应=1(&lambda;=0)。

For rotated bivariate copulas one has to transform the input arguments u1 and/or u2. In particular, for copulas rotated by 90 degrees u1 has to be set to 1-u1, for 270 degrees u2 to 1-u2 and for survival copulas u1 and u2 to 1-u1 and 1-u2, respectively. Then &lambda;-functions for the corresponding non-rotated copula families can be considered.
对于旋转的二元Copula函数有转换输入参数u1和/或u2。特别是Copula函数旋转90度u1必须设置为1-u1的,270度u21-u2和生存Copula函数u1和 u2到1-u1和1-u2,分别。然后&lambda;功能相应的非旋转Copula的家庭可以考虑的。


(作者)----------Author(s)----------


Ulf Schepsmeier



参考文献----------References----------

Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88 (423), 1034-1043.
Maximum likelihood estimation of C-vine pair-copula constructions based on bivariate copulas from different families. Diploma thesis, Technische Universitaet Muenchen.<br> http://mediatum.ub.tum.de/?id=1079296.

参见----------See Also----------

BiCopMetaContour, BiCopKPlot, BiCopChiPlot
BiCopMetaContour,BiCopKPlot,BiCopChiPlot


实例----------Examples----------


# Clayton and rotated Clayton copulas[克莱顿和旋转克莱顿Copula函数]
n = 1000
tau = 0.5

# simulate from Clayton copula[模拟克莱顿系词]
fam = 3       
theta = BiCopTau2Par(fam,tau)
dat = BiCopSim(n,fam,theta)

# create lambda-function plots[创建的lambda函数图]
dev.new(width=16,height=5)
par(mfrow=c(1,3))
BiCopLambda(dat[,1],dat[,2])        # empirical lambda-function        [经验的lambda函数]
BiCopLambda(family=fam,par=theta)        # theoretical lambda-function[理论的lambda函数]
BiCopLambda(dat[,1],dat[,2],family=fam,par=theta)        # both[都]

# simulate from rotated Clayton copula (90 degrees)[模拟旋转克莱顿系词(90度)]
fam = 23  
theta = BiCopTau2Par(fam,-tau)
dat = BiCopSim(n,fam,theta)

# rotate the data to standard Clayton copula data[旋转的数据标准克莱顿Copula的数据]
rot_dat = 1-dat[,1]

dev.new(width=16,height=5)
par(mfrow=c(1,3))
BiCopLambda(rot_dat,dat[,2])  # empirical lambda-function        [经验的lambda函数]
BiCopLambda(family=3,par=-theta)        # theoretical lambda-function[理论的lambda函数]
BiCopLambda(rot_dat,dat[,2],family=3,par=-theta)        # both[都]


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 07:30 , Processed in 0.018374 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表