找回密码
 注册
查看: 420|回复: 0

R语言 VineCopula包 BiCopKPlot()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 16:09:44 | 显示全部楼层 |阅读模式
BiCopKPlot(VineCopula)
BiCopKPlot()所属R语言包:VineCopula

                                        Kendall's plot (K-plot) for bivariate copula data
                                         二元Copula的数据肯德尔的图(K-图)

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function creates a Kendall's plot (K-plot) of given bivariate copula data.
这个函数创建了一个肯德尔的图(K-图)给定的二元Copula的数据。


用法----------Usage----------


BiCopKPlot(u1, u2, PLOT=TRUE, ...)



参数----------Arguments----------

参数:u1,u2
Data vectors of equal length with values in [0,1].
数据向量长度相等的值在[0,1]。


参数:PLOT
Logical; whether the results are plotted. If PLOT = FALSE, the values W.in and Hi.sort are returned (see below; default: PLOT = TRUE).
逻辑;结果是否绘制。如果PLOT = FALSE,值W.in和Hi.sort返回(见下文;默认:PLOT = TRUE)。


参数:...
Additional plot arguments.
其他图参数。


Details

详细信息----------Details----------

For observations u_{i,j}, i=1,...,N, j=1,2, the K-plot considers two quantities: First, the ordered values of the empirical bivariate distribution function H_i:=\hat{F}_{U_1U_2}(u_{i,1},u_{i,2}) and, second, W_{i:N}, which are the expected values of the order statistics from a random sample of size N of the random variable W=C(U_1,U_2) under the null hypothesis of independence between U_1 and U_2. W_{i:N} can be calculated as follows
的观测u_{i,j}, i=1,...,N, j=1,2, K-图认为两个量:首先,经验的二元分布函数H_i:=\hat{F}_{U_1U_2}(u_{i,1},u_{i,2})的有序值,第二,W_{i:N},这是预期值的次序统计量从随机抽样的大小N随机变量的W=C(U_1,U_2)下的零假设之间的独立性U_1和U_2。 W_{i:N}可以如下计算

where
哪里

and k_0() is the corresponding density.
和k_0()相应的密度。

K-plots can be seen as the bivariate copula equivalent to QQ-plots. If the points of a K-plot lie approximately on the diagonal y=x, then U_1 and U_2 are approximately independent. Any deviation from the diagonal line points towards dependence. In case of positive dependence, the points of the K-plot should be located above the diagonal line, and vice versa for negative dependence. The larger the deviation from the diagonal, the stronger is the degree of dependency. There is a perfect positive dependence if points ≤ft(W_{i:N},H_i\right) lie on the curve K_0(ω) located above the main diagonal. If points (W_{i:N},H_i) however lie on the x-axis, this indicates a perfect negative dependence between U_1 and U_2.
K-图可以看出,二元Copula的QQ图。如果点的K-图位于约对角线上的y=x,那么U_1和U_2大约有独立的。任何偏离对角线指向依赖。在积极的依赖的情况下,点的K-曲线应位于上方的对角线,并且为负依赖反之亦然。从对角线的偏差越大,越强的依赖程度。有积极的依赖是一个完美的,如果点≤ft(W_{i:N},H_i\right)位于曲线K_0(ω)上方的主对角线。如果点(W_{i:N},H_i)但是趴在x轴,这表明一个完美的负相关性之间U_1和U_2。


值----------Value----------


参数:W.in
W-statistics (x-axis).
W-统计量(x轴)。


参数:Hi.sort
H-statistics (y-axis).
H-统计量(y轴)。


(作者)----------Author(s)----------


Natalia Belgorodski, Ulf Schepsmeier



参考文献----------References----------

Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

参见----------See Also----------

BiCopMetaContour, BiCopChiPlot, BiCopLambda, BiCopGofKendall
BiCopMetaContour,BiCopChiPlot,BiCopLambda,BiCopGofKendall


实例----------Examples----------


# Gaussian and Clayton copulas[高斯和Clayton Copula函数]
n = 500
tau = 0.5

# simulate from Gaussian copula[模拟高斯系词]
fam1 = 1       
theta1 = BiCopTau2Par(fam1,tau)
dat1 = BiCopSim(n,fam1,theta1)       

# simulate from Clayton copula[模拟克莱顿系词]
fam2 = 3
theta2 = BiCopTau2Par(fam2,tau)
dat2 = BiCopSim(n,fam2,theta2)

# create K-plots[创建K-图]
dev.new(width=10,height=5)
par(mfrow=c(1,2))
BiCopKPlot(dat1[,1],dat1[,2],main="Gaussian copula")
BiCopKPlot(dat2[,1],dat2[,2],main="Clayton copula")

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 07:34 , Processed in 0.019833 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表