BiCopGofKendall(VineCopula)
BiCopGofKendall()所属R语言包:VineCopula
Goodness-of-fit test based on Kendall's process for bivariate copula data
Kendall的过程中二元Copula的数据的的基础上的拟合优度测试
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function performs the goodness-of-fit test based on Kendall's process for bivariate copula data. It computes the Cramer-von Mises and Kolmogorov-Smirnov test statistics, respectively, as well as the according p-values using bootstrapping.
这个函数执行的善良的拟合优度检验,Kendall的过程中二元Copula的数据的的基础上的。它计算的Cramer-von Mises和Kolmogorov-Smirnov检验统计,以及相应的p值使用自举。
用法----------Usage----------
BiCopGofKendall(u1, u2, family, B=100, level=0.05)
参数----------Arguments----------
参数:u1,u2
Data vectors of equal length with values in [0,1].
数据向量长度相等的值在[0,1]。
参数:family
An integer defining the bivariate copula family for which the test is performed: <br> 1 = Gaussian copula <br> 2 = Student t copula (t-copula) <br> 3 = Clayton copula <br> 4 = Gumbel copula <br> 5 = Frank copula <br> 6 = Joe copula <br> 7 = BB1 copula <br> 8 = BB6 copula <br> 9 = BB7 copula <br> 10 = BB8 copula <br> 13 = rotated Clayton copula (180 degrees; “survival Clayton”) <br> 14 = rotated Gumbel copula (180 degrees; “survival Gumbel”) <br> 16 = rotated Joe copula (180 degrees; “survival Joe”) <br> 17 = rotated BB1 copula (180 degrees; “survival BB1”)<br> 18 = rotated BB6 copula (180 degrees; “survival BB6”)<br> 19 = rotated BB7 copula (180 degrees; “survival BB7”)<br> 20 = rotated BB8 copula (180 degrees; “survival BB8”)<br> 23 = rotated Clayton copula (90 degrees) <br> 24 = rotated Gumbel copula (90 degrees) <br> 26 = rotated Joe copula (90 degrees) <br> 27 = rotated BB1 copula (90 degrees) <br> 28 = rotated BB6 copula (90 degrees) <br> 29 = rotated BB7 copula (90 degrees) <br> 30 = rotated BB8 copula (90 degrees) <br> 33 = rotated Clayton copula (270 degrees) <br> 34 = rotated Gumbel copula (270 degrees) <br> 36 = rotated Joe copula (270 degrees) <br> 37 = rotated BB1 copula (270 degrees) <br> 38 = rotated BB6 copula (270 degrees) <br> 39 = rotated BB7 copula (270 degrees) <br> 40 = rotated BB8 copula (270 degrees)
一个整数,测试定义二元Copula的家庭的“:<BR>1=高斯系词参考的2学生t Copula函数(T-Copula函数)参考3是克莱顿系词参考4=冈贝尔系词参考5=弗兰克·系词参考6=乔系词参考7= BB1 Copula函数参考8= BB6 Copula的参考9= BB7系词参考10= BB8系词参考13=旋转(180度“生存克莱顿”克莱顿系词;)参考14=旋转(180度“生存冈贝尔”)Gumbel分布Copula的参考16=旋转乔系词(180度;“生存乔”)<BR> 17=旋转BB1 Copula函数(180度;“BB1生存”)参考18=旋转BB6 Copula函数(180度“生存BB6”)参考19=旋转BB7系词(180度“生存BB7”)参考20=旋转BB8系词(180度“生存BB8”)参考23 =旋转克莱顿系词(90度)参考24=系词(90度)旋转冈贝尔参考26=旋转乔系词(90度)参考27=旋转BB1 Copula函数(90度) >28=旋转(90度)BB6 Copula的参考29=旋转BB7系词(90度)参考30=旋转BB8系词(90度)参考 33 =系词(270度)旋转克莱顿参考34=系词(270度)旋转冈贝尔参考36=旋转乔系词(270度)参考<X >=旋转BB1 Copula函数(270度)参考37=旋转(270度)BB6 Copula的参考38=旋转BB7系词(270度)参考39 =旋转BB8系词(270度)
参数:B
Integer; number of bootstrap samples (default: B = 100). For B = 0 only the the test statistics are returned. WARNING: If B is chosen too large, computations will take very long.
整数的bootstrap样本数量(默认:B = 100)。对于B = 0返回的检验统计量的。警告:如果B选择过大,计算将需要很长时间。
参数:level
Numeric; significance level of the goodness-of-fit test (default: level = 0.05).
数字;善良的拟合优度检验的显着性水平(默认:level = 0.05)。
Details
详细信息----------Details----------
This copula goodness-of-fit test is based on Kendall's process as investigated by Genest and Rivest (1993) and Wang and Wells (2000). For rotated copulas the input arguments are transformed and the goodness-of-fit procedure for the corresponding non-rotated copula is used.
这系词善良的拟合优度检验的基础上肯德尔Genest和Rivest(1993)的王和韦尔斯(2000)调查的过程中。对于旋转Copula函数的输入参数被转换,并使用相应的非旋转系词善良的配合程序。
值----------Value----------
参数:p.value.CvM
P-value of the goodness-of-fit test using the Cramer-von Mises statistic <br> (if B > 0).
P-值的善良的拟合优度检验,使用克莱姆·冯·米塞斯的统计<BR>(如果B > 0)。
参数:p.value.KS
P-value of the goodness-of-fit test using the Kolmogorov-Smirnov statistic <br> (if B > 0).
使用的Kolmogorov-斯米尔诺夫统计<BR>的的的善良的拟合优度检验的P值(如果B > 0“)。
参数:statistic.CvM
The observed Cramer-von Mises test statistic.
所观察到的Cramer-von Mises的检验统计量。
参数:statistic.KS
The observed Kolmogorov-Smirnov test statistic.
所观察到的Kolmogorov-Smirnov检验统计量。
(作者)----------Author(s)----------
Jiying Luo, Eike Brechmann
参考文献----------References----------
Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88 (423), 1034-1043.
Stepwise estimation of D-vines with arbitrary specified copula pairs and EDA Tools. Diploma thesis, Technische Universitaet Muenchen.<br> http://mediatum.ub.tum.de/?id=1079291.
Model selection and semiparametric inference for bivariate failure-time data. Journal of the American Statistical Association, 95 (449), 62-72.
参见----------See Also----------
BiCopIndTest, BiCopSelect, BiCopVuongClarke, BiCopKPlot, BiCopLambda
BiCopIndTest,BiCopSelect,BiCopVuongClarke,BiCopKPlot,BiCopLambda
实例----------Examples----------
# sample from a Gaussian copula[样品从高斯系词]
par1 = 3
fam1 = 3
dat1 = BiCopSim(500,fam1,par1)
# perform the goodness-of-fit test for the true copula[真正的Copula函数执行善良的拟合优度检验]
gof = BiCopGofKendall(dat1[,1],dat1[,2],fam1)
gof$p.value.CvM
gof$p.value.KS
# perform the goodness-of-fit test for the Frank copula[执行善良的拟合优度检验的弗兰克·系词]
gof = BiCopGofKendall(dat1[,1],dat1[,2],5)
gof$p.value.CvM
gof$p.value.KS
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|