pareto1(VGAM)
pareto1()所属R语言包:VGAM
Pareto and Truncated Pareto Distribution Family Functions
帕累托和截断Pareto分布家庭功能
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimates one of the parameters of the Pareto(I) distribution by maximum likelihood estimation. Also includes the upper truncated Pareto(I) distribution.
估计帕累托(I)分布的最大似然估计的参数之一。此外,还包括上截断帕雷托分布(I)。
用法----------Usage----------
pareto1(lshape = "loge", earg = list(), location = NULL)
tpareto1(lower, upper, lshape = "loge", earg = list(), ishape = NULL,
imethod = 1)
参数----------Arguments----------
参数:lshape
Parameter link function applied to the parameter k. See Links for more choices. A log link is the default because k is positive.
参数链接功能的参数k。见Links更多的选择。的log链接是默认的,因为“k是积极的。
参数:earg
List. Extra argument for the link. See earg in Links for general information.
列表。额外的参数的链接。见earg中Links的一般信息。
参数:lower, upper
Numeric. Lower and upper limits for the truncated Pareto distribution. Each must be positive and of length 1. They are called alpha and U below.
数字。截断Pareto分布的上限和下限。每个人都必须是积极的,长度为1。他们被称为alpha和U下面。
参数:ishape
Numeric. Optional initial value for the shape parameter. A NULL means a value is obtained internally. If failure to converge occurs try specifying a value, e.g., 1 or 2.
数字。可选的形状参数的初始值。 ANULL是指内部得到的值。如果出现收敛失败尝试指定一个值,例如1或2。
参数:location
Numeric. The parameter alpha below. If the user inputs a number then it is assumed known with this value. The default means it is estimated by maximum likelihood estimation, which means min(y) where y is the response vector.
数字。参数alpha下面。如果用户输入一个号码,那么它被假定与此值已知。默认意味着它是估计的最大似然估计,这意味着min(y)y是响应向量。
参数:imethod
An integer with value 1 or 2 which specifies the initialization method. If failure to converge occurs try the other value, or else specify a value for ishape.
一个整数,值1或2指定的初始化方法。如果收敛失败发生的其他值,否则指定的值ishape。
Details
详细信息----------Details----------
A random variable Y has a Pareto distribution if
随机变量Y如果有一个帕累托分布
for some positive k and C. This model is important in many applications due to the power law probability tail, especially for large values of y.
一些积极的k和C。这种模式是很重要的,在许多应用中,由于功法概率尾巴,特别是对于大值y。
The Pareto distribution, which is used a lot in economics, has a probability density function that can be written
帕累托分布,这是用了很多在经济学中,有一个概率密度函数可以写
for 0< alpha < y and k>0. The alpha is known as the location parameter, and k is known as the shape parameter. The mean of Y is alpha*k/(k-1) provided k > 1. Its variance is alpha^2 k /((k-1)^2 (k-2)) provided k > 2.
0< alpha < y和k>0。被称为alpha的位置参数,和k被称为形状参数。 Y的平均alpha*k/(k-1)提供k > 1。方差为alpha^2 k /((k-1)^2 (k-2))提供k > 2。
The upper truncated Pareto distribution has a probability density function that can be written
上部截断Pareto分布的概率密度函数,可以写入
for 0< alpha < y < U < Inf and k>0. Possibly, better names for k are the index and tail parameters. Here, alpha and U are known. The mean of Y is k * lower^k * (U^(1-k)-alpha^(1-k)) / ((1-k) * (1-(alpha/U)^k)).
0< alpha < y < U < Inf和k>0。也许,更好的名称为k指数和尾部参数。在这里,alpha和U是众所周知的。 Y的平均 k * lower^k * (U^(1-k)-alpha^(1-k)) / ((1-k) * (1-(alpha/U)^k))。
值----------Value----------
An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, and vgam.
类的一个对象"vglmff"(见vglmff-class)。该对象被用于建模功能,如vglm,vgam。
警告----------Warning ----------
The usual or unbounded Pareto distribution has two parameters (called alpha and k here) but the family function pareto1 estimates only k using iteratively reweighted least squares. The MLE of the alpha parameter lies on the boundary and is min(y) where y is the response. Consequently, using the default argument values, the standard errors are incorrect when one does a summary on the fitted object. If the user inputs a value for alpha then it is assumed known with this value and then summary on the fitted object should be correct. Numerical problems may occur for small k, e.g., k < 1.
通常的或无界的的帕累托分布有两个参数(称为alpha和k这里),但家庭的功能pareto1估计只有k使用迭代加权最小二乘法。 alpha参数的极大似然估计是在边界上,是min(y)y是响应。因此,使用默认参数值,标准差是不正确的,当一个人做了summary的合身的对象上。如果用户输入的值alpha然后假定与此值已知,,然后summary拟合对象上应该是正确的。小k,例如,k < 1数值可能会出现问题。
注意----------Note----------
Outside of economics, the Pareto distribution is known as the Bradford distribution.
以外的经济中,帕累托分布已知的布拉德福德分布。
For pareto1, if the estimate of k is less than or equal to unity then the fitted values will be NAs. Also, pareto1 fits the Pareto(I) distribution. See paretoIV for the more general Pareto(IV/III/II) distributions, but there is a slight change in notation: s = k and b = alpha.
对于pareto1,如果估计k是小于或等于1,那么对于拟合值将是NA的。另外,pareto1符合帕累托(I)的分布。见paretoIV对于更一般的帕累托分布(IV / III / II),但有一个微小的变化符号:s = k和b = alpha。
In some applications the Pareto law is truncated by a natural upper bound on the probability tail. The upper truncated Pareto distribution has three parameters (called alpha, U and k here) but the family function tpareto estimates only k. With known lower and upper limits, the ML estimator of k has the usual properties of MLEs. Aban (2006) discusses other inferential details.
在某些应用中,帕累托定律一个自然的上限的概率尾巴被截断。上截断Pareto分布有三个参数(称为alpha,U和k这里),但家庭功能tpareto估计只有k。与已知的上限和下限,最大似然估计的k具有通常的性能的最大似然估计。阿万(2006年)讨论了其他的推理细节。
(作者)----------Author(s)----------
T. W. Yee
参考文献----------References----------
Statistical Distributions, New York: Wiley-Interscience, Third edition.
Parameter estimation for the truncated Pareto distribution, Journal of the American Statistical Association, 101(473), 270–277.
参见----------See Also----------
Pareto, Tpareto, paretoIV, gpd.
Pareto,Tpareto,paretoIV,gpd。
实例----------Examples----------
alpha = 2; kay = exp(3)
pdat = data.frame(y = rpareto(n = 1000, location = alpha, shape = kay))
fit = vglm(y ~ 1, pareto1, pdat, trace = TRUE)
fit@extra # The estimate of alpha is here[估计这里的α]
head(fitted(fit))
with(pdat, mean(y))
coef(fit, matrix = TRUE)
summary(fit) # Standard errors are incorrect!![标准错误是不正确的!]
# Here, alpha is assumed known[在这里,α假定已知]
fit2 = vglm(y ~ 1, pareto1(location = alpha), pdat, trace = TRUE, crit = "coef")
fit2@extra # alpha stored here[阿尔法存储在这里]
head(fitted(fit2))
coef(fit2, matrix = TRUE)
summary(fit2) # Standard errors are okay[标准误差是可以的]
# Upper truncated Pareto distribution[上截断Pareto分布]
lower = 2; upper = 8; kay = exp(2)
pdat3 = data.frame(y = rtpareto(n = 100, lower = lower,
upper = upper, shape = kay))
fit3 = vglm(y ~ 1, tpareto1(lower, upper), pdat3, trace = TRUE, cri = "coef")
coef(fit3, matrix = TRUE)
c(fit3@misc$lower, fit3@misc$upper)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|