找回密码
 注册
查看: 344|回复: 0

R语言 VGAM包 lgammaff()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 15:40:49 | 显示全部楼层 |阅读模式
lgammaff(VGAM)
lgammaff()所属R语言包:VGAM

                                         Log-gamma Distribution Family Function
                                         对数伽玛分布族功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Estimation of the parameter of the standard and nonstandard log-gamma distribution.
标准和非标准的对数伽玛分布的参数估计。


用法----------Usage----------


lgammaff(link = "loge", earg = list(), init.k = NULL)
lgamma3ff(llocation = "identity", lscale = "loge", lshape = "loge",
          elocation = list(), escale = list(), eshape = list(),
          ilocation = NULL, iscale = NULL, ishape = 1, zero = NULL)



参数----------Arguments----------

参数:llocation, lscale
Parameter link function applied to the location parameter a and the positive scale parameter b. See Links for more choices.  
参数链接功能的位置参数a和积极的尺度参数b。见Links更多的选择。


参数:link, lshape
Parameter link function applied to  the positive shape parameter k.  See Links for more choices.  
参数链接功能适用于积极的形状参数k。见Links更多的选择。


参数:earg, elocation, escale, eshape
List. Extra argument for each of the links. See earg in Links for general information.  
列表。每个环节的额外参数。见earg中Links的一般信息。


参数:init.k, ishape
Initial value for k. If given, it must be positive.  If failure to converge occurs, try some other value. The default means an initial value is determined internally.  
初始值k。如果给定的,它必须是积极的。如果收敛失败时,尝试一些其他的价值。默认的装置内部确定一个初始值。


参数:ilocation, iscale
Initial value for a and b. The defaults mean an initial value is determined internally for each.  
a和b的初始值。默认的初始值确定为每个内部。


参数:zero
An integer-valued vector specifying which linear/additive predictors are modelled as intercepts only. The values must be from the set {1,2,3}. The default value means none are modelled as intercept-only terms. See CommonVGAMffArguments for more information.  
指定一个整数值向量线性/添加剂的预测模型仅作为拦截。这些值必须是从集合{1,2,3}。默认值是指没有被建模为仅截距。见CommonVGAMffArguments更多信息。


Details

详细信息----------Details----------

The probability density function of the standard log-gamma distribution is given by
的标准对数伽玛分布的概率密度函数

for parameter k>0 and all real y. The mean of Y is digamma(k) (returned as the fitted values) and its variance is trigamma(k).
参数k>0和所有真正的y。的平均Y是digamma(k)的拟合值(返回)和方差为trigamma(k)。

For the non-standard log-gamma distribution, one replaces y by (y-a)/b, where a is the location parameter and b is the positive scale parameter. Then the density function is
非标准对数伽玛分布,取代y(y-a)/b,其中a的位置参数和b是积极的尺度参数。然后,密度函数是

The mean and variance of Y are a + b*digamma(k) (returned as the fitted values) and b^2 * trigamma(k), respectively.
Ya + b*digamma(k)(返回的拟合值)和b^2 * trigamma(k),分别均值和方差。


值----------Value----------

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, and vgam.
类的一个对象"vglmff"(见vglmff-class)。该对象被用于建模功能,如vglm,vgam。


注意----------Note----------

The standard log-gamma distribution can be viewed as a generalization of the standard type 1 extreme value density: when k = 1 the distribution of -Y is the standard type 1 extreme value distribution.
标准对数伽玛分布可以被看作是一个概括的标准1型极值密度:k = 1-Y的分布是标准的1型极值分布。

The standard log-gamma distribution is fitted with lgammaff and the non-standard (3-parameter) log-gamma distribution is fitted with lgamma3ff.
标准对数伽玛分布的配备lgammaff和非标(3参数)的对数伽玛分布都配有lgamma3ff。


(作者)----------Author(s)----------


T. W. Yee



参考文献----------References----------

Extreme Value Distributions: Theory and Applications, pages 48–49, London: Imperial College Press.
Continuous Univariate Distributions, 2nd edition, Volume 2, p.89, New York: Wiley.

参见----------See Also----------

rlgamma, gengamma, prentice74, gamma1, lgamma.
rlgamma,gengamma,prentice74,gamma1,lgamma。


实例----------Examples----------


ldata = data.frame(y = rlgamma(100, k = exp(1)))
fit = vglm(y ~ 1, lgammaff, ldata, trace = TRUE, crit = "coef")
summary(fit)
coef(fit, matrix = TRUE)
Coef(fit)

ldata = data.frame(x = runif(nn <- 5000))     # Another example[另一个例子]
ldata = transform(ldata, loc = -1 + 2 * x, Scale = exp(1))
ldata = transform(ldata, y = rlgamma(nn, loc, scale = Scale, k = exp(0)))
fit2 = vglm(y ~ x, lgamma3ff(zero = 2:3), ldata, trace = TRUE, crit = "c")
coef(fit2, matrix = TRUE)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 16:44 , Processed in 0.023802 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表