leipnik(VGAM)
leipnik()所属R语言包:VGAM
Leipnik Distribution Family Function
Leipnik分配家庭功能
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimates the two parameters of a (transformed) Leipnik distribution by maximum likelihood estimation.
估计最大似然估计(转化)Leipnik分布的两个参数。
用法----------Usage----------
leipnik(lmu = "logit", llambda = "loge", emu=list(),
elambda=list(), imu = NULL, ilambda = NULL)
参数----------Arguments----------
参数:lmu, llambda
Link function for the mu and lambda parameters. See Links for more choices.
mu和lambda参数的链接功能。见Links更多的选择。
参数:imu, ilambda
Numeric. Optional initial values for mu and lambda.
数字。可选的初始值mu和lambda。
参数:emu, elambda
List. Extra argument for each of the links. See earg in Links for general information.
列表。每个环节的额外参数。见earg中Links的一般信息。
Details
详细信息----------Details----------
The (transformed) Leipnik distribution has density function
(变换)Leipnik分布密度函数
where 0 < y < 1 and lambda > -1. The mean is mu (returned as the fitted values) and the variance is 1/lambda.
0 < y < 1和lambda > -1。的平均mu(返回的拟合值)和方差是1/lambda。
Jorgensen (1997) calls the above the transformed Leipnik distribution, and if y = (x+1)/2 and mu = (theta+1)/2, then the distribution of X as a function of x and theta is known as the the (untransformed) Leipnik distribution. Here, both x and theta are in (-1,1).
约根森(1997年)调用上面的的转化Leipnik分布,如果y = (x+1)/2和mu = (theta+1)/2,然后分配的X的函数x和theta是已知的(未转化)Leipnik分布。在这里,都x和theta是(-1,1)。
值----------Value----------
An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, rrvglm and vgam.
类的一个对象"vglmff"(见vglmff-class)。该对象被用于建模功能,如vglm,rrvglm和vgam。
警告----------Warning ----------
If llambda="identity" then it is possible that the lambda estimate becomes less than -1, i.e., out of bounds. One way to stop this is to choose llambda="loge", however, lambda is then constrained to be positive.
如果llambda="identity"然后是lambda估计可能小于-1,即,出界。一种方法来阻止这种选择llambda="loge",但是,lambda然后限制是积极的。
注意----------Note----------
Convergence may be slow or fail. Until better initial value estimates are forthcoming try assigning the argument ilambda some numerical value if it fails to converge. Currently, Newton-Raphson is implemented, not Fisher scoring. Currently, this family function probably only really works for intercept-only models, i.e., y ~ 1 in the formula.
收敛的速度会较慢或失败。直到更好的初始值估计即将到来的尝试分配的说法ilambda一些数值,如果它不能收敛。目前,牛顿 - 拉夫逊来实现,而不是费舍尔得分。目前,这个家庭的功能大概只有真正起作用的仅截距模型,即,y ~ 1的公式。
(作者)----------Author(s)----------
T. W. Yee
参考文献----------References----------
The Theory of Dispersion Models. London: Chapman & Hall
Continuous Univariate Distributions, 2nd edition, Volume 2, New York: Wiley. (pages 612–617).
参见----------See Also----------
mccullagh89.
mccullagh89。
实例----------Examples----------
ldat = data.frame(y = rnorm(n=2000, mean=0.5, sd=0.1)) # Not good data[没有良好的数据]
fit = vglm(y ~ 1, leipnik(ilambda=1), ldat, tr=TRUE, checkwz=FALSE)
fit = vglm(y ~ 1, leipnik(ilambda=1,llam=logoff, elam=list(offset=1)),
ldat, trace=TRUE, cri="coef")
head(fitted(fit))
with(ldat, mean(y))
summary(fit)
coef(fit, matrix=TRUE)
Coef(fit)
sum(weights(fit)) # sum of the prior weights[现有的权重的总和]
sum(weights(fit, type="w")) # sum of the working weights[工作权重的总和]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|