Coef.qrrvglm-class(VGAM)
Coef.qrrvglm-class()所属R语言包:VGAM
Class “Coef.qrrvglm”
类“Coef.qrrvglm”
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The most pertinent matrices and other quantities pertaining to a QRR-VGLM (CQO model).
最相关的矩阵和其他有关的一个QRR VGLM(CQO模型)的数量。
类对象----------Objects from the Class----------
Objects can be created by calls of the form Coef(object, ...) where object is an object of class "qrrvglm" (created by cqo).
对象可以通过检测的形式Coef(object, ...)其中object是类的一个对象"qrrvglm"(创建cqo)。
In this document, R is the rank, M is the number of linear predictors and n is the number of observations.
在这份文件中,R是等级,M是线性预测的数量和n的若干意见。
插槽----------Slots----------
A: Of class "matrix", A, which are the linear "coefficients" of the matrix of latent variables.
A:对类"matrix",A,潜变量的矩阵是线性的系数。
B1: Of class "matrix", B1.
B1:类"matrix",B1。
C: Of class "matrix", C, the
C类"matrix",C,
Constrained: Logical. Whether the model is
Constrained:逻辑。模型是否
D: Of class "array", D[,,j] is an order-Rank matrix, for j = 1,...,M. Ideally, these are negative-definite in order to make the response curves/surfaces bell-shaped.
D:类"array",D[,,j]是为了Rank矩阵,为j= 1,...,M。理想的情况下,这些都是负面正定的,以使响应曲线/钟形的表面。
Rank: The rank (dimension, number of latent variables)
Rank:秩(维数,潜变量的数量)
lv: n by R matrix
lv:nR矩阵
lvOrder: Of class "matrix", the permutation returned when the function order is applied to each column of lv. This enables each column of lv to be easily sorted.
lvOrder:类"matrix",置换时返回的功能order被施加到每一列lv。这使得每个列的lv可以很容易地排序。
Maximum: Of class "numeric", the M maximum fitted values. That is, the fitted values at the optima for Norrr = ~ 1 models.
Maximum类"numeric",M最大的拟合值。也就是说,在最优Norrr = ~ 1模型的拟合值。
NOS: Number of species.
NOS:物种的数量。
Optimum: Of class "matrix", the values of the latent variables where the optima are. If the curves are not bell-shaped, then the value will
Optimum:类"matrix",潜变量的值的最优解。如果不是钟形曲线,则该值将
OptimumOrder: Of class "matrix", the permutation returned when the function order is applied to each column of Optimum. This enables each row of Optimum to be easily sorted.
OptimumOrder:类"matrix",置换时返回的功能order被施加到每一列Optimum。这使得每行的Optimum可以很容易地排序。
bellshaped: Vector of logicals: is each
bellshaped:每个向量的逻辑:
dispersion: Dispersion parameter(s).
dispersion:分散参数(S)。
Dzero: Vector of logicals, is each of the response curves linear in the latent variable(s)? It will be if and only if D[,,j] equals O, for
Dzero:媒介的逻辑值,是每一个潜变量(s)的响应曲线的线性?这将是如果,只有D[,,j]等于O,
Tolerance: Object of class "array", Tolerance[,,j] is an order-Rank matrix, for j = 1,...,M, being the matrix of tolerances (squared if on the diagonal). These are denoted by T in Yee (2004). Ideally, these are positive-definite in order to make the response curves/surfaces bell-shaped. The tolerance matrices satisfy T_s = -(0.5 D_s^(-1).
Tolerance:类的对象"array",Tolerance[,,j]是为了Rank矩阵,为j= 1,...,M,矩阵的公差(如果对角线上的平方)。这些都记由T在仪(2004)。在理想的情况下,这些是正定的,以使响应曲线/钟形的表面。的耐受性矩阵满足T_s = -(0.5 D_s^(-1)。
(作者)----------Author(s)----------
Thomas W. Yee
参考文献----------References----------
A new technique for maximum-likelihood canonical Gaussian ordination. Ecological Monographs, 74, 685–701.
参见----------See Also----------
Coef.qrrvglm, cqo, print.Coef.qrrvglm.
Coef.qrrvglm,cqo,print.Coef.qrrvglm。
实例----------Examples----------
x2 = rnorm(n <- 100)
x3 = rnorm(n)
x4 = rnorm(n)
lv1 = 0 + x3 - 2*x4
lambda1 = exp(3 - 0.5 * (lv1-0)^2)
lambda2 = exp(2 - 0.5 * (lv1-1)^2)
lambda3 = exp(2 - 0.5 * ((lv1+4)/2)^2)
y1 = rpois(n, lambda1)
y2 = rpois(n, lambda2)
y3 = rpois(n, lambda3)
yy = cbind(y1,y2,y3)
# vvv p1 = cqo(yy ~ x2 + x3 + x4, fam=poissonff, trace=FALSE)[VVV P1 = cqo(YY~X2 + X3 + X4,FAM = poissonff,跟踪= FALSE)]
## Not run: [#不运行:]
lvplot(p1, y = TRUE, lcol = 1:3, pch = 1:3, pcol = 1:3)
## End(Not run)[#(不执行)]
# vvv print(Coef(p1), digits=3)[:VVV打印(系数系数(p1)时,位数= 3)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|