找回密码
 注册
查看: 295|回复: 0

R语言 VGAM包 betaff()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 15:26:05 | 显示全部楼层 |阅读模式
betaff(VGAM)
betaff()所属R语言包:VGAM

                                         The Two-parameter Beta Distribution Family Function
                                         两个参数的Beta分布的家庭功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Estimation of the mean and precision parameters of the beta distribution.
Beta分布的均值和精度参数的估计。


用法----------Usage----------


betaff(A = 0, B = 1,
       lmu = if (A == 0 & B == 1) "logit" else "elogit", lphi = "loge",
       emu = if (lmu == "elogit") list(min = A, max = B) else list(),
       ephi = list(), imu = NULL, iphi = NULL, imethod = 1, zero = NULL)



参数----------Arguments----------

参数:A, B
Lower and upper limits of the distribution. The defaults correspond to the standard beta distribution where the response lies between 0 and 1.  
的上限和下限的分布。默认值对应的标准beta分布的响应是0和1之间。


参数:lmu, lphi
Link function for the mean and precision parameters.  See below for more details. See Links for more choices.  
Link功能的均值和精度的参数。请参阅下面的更多细节。见Links更多的选择。


参数:emu, ephi
List. Extra argument for the respective links. See earg in Links for general information.  
列表。额外的参数,相应的链接。见earg中Links的一般信息。


参数:imu, iphi
Optional initial value for the mean and precision parameters respectively.  A NULL value means a value is obtained in the initialize slot.  
可选的初始值的平均值和精度参数。 ANULL值表示一个数值中获得initialize插槽。


参数:imethod, zero
See CommonVGAMffArguments for more information.  
见CommonVGAMffArguments更多信息。


Details

详细信息----------Details----------

The two-parameter beta distribution can be written  f(y) =
这两个参数的beta分布可以写成f(y) =

for A < y < B, and beta(.,.) is the beta function (see beta). The parameter mu1 satisfies mu1 = (mu - A) / (B-A) where mu is the mean of Y. That is, mu1 is the mean of of a standard beta distribution: E(Y) = A + (B-A)*mu1, and these are the fitted values of the object. Also, phi is positive and A < mu < B. Here, the limits A and B are known.
A < y < B和beta(.,.)是β函数(见beta)。参数mu1满足mu1 = (mu - A) / (B-A)mu的平均Y。也就是说,mu1是一个标准的Beta分布的平均值的:E(Y) = A + (B-A)*mu1,这些都是拟合值的对象。此外,phi是积极的,A < mu < B。在这里,限制A和B是众所周知的。

Another parameterization of the beta distribution involving the raw shape parameters is implemented in beta.ab.
涉及的原始形状参数的Beta分布的另一种参数化的实施beta.ab。

For general A and B, the variance of Y is (B-A)^2 *        mu1 * (1-mu1) / (1+phi). Then phi can be interpreted as a precision parameter in the sense that, for fixed mu, the larger the value of phi, the smaller the variance of Y. Also, mu1=shape1/(shape1+shape2) and phi = shape1+shape2.
对于一般的A和B,方差Y是(B-A)^2 *        mu1 * (1-mu1) / (1+phi)。然后phi可以被解释作为一个精确的参数在这个意义上,用于固定mu,的值越大phi,Y的方差越小。此外,mu1=shape1/(shape1+shape2)和phi = shape1+shape2。

Fisher scoring is implemented. If A and B are unknown then the VGAM family function beta4() can be used to estimate these too.
费舍尔得分的实施。如果A和B是未知的,那么VGAM家庭功能beta4()可以用来估计这些。


值----------Value----------

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, and vgam.
类的一个对象"vglmff"(见vglmff-class)。该对象被用于建模功能,如vglm,vgam。


注意----------Note----------

The response must have values in the interval (A, B).
的反应必须有值的时间间隔(A,B)。


(作者)----------Author(s)----------


Thomas W. Yee



参考文献----------References----------

Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31, 799&ndash;815.
http://www.stat.auckland.ac.nz/~yee contains further information and examples.

参见----------See Also----------

beta.ab, Beta, genbetaII, betaII, betabinomial.ab, betageometric, betaprime, rbetageom, rbetanorm, kumar, beta4, elogit.
beta.ab,Beta,genbetaII,betaII,betabinomial.ab,betageometric,betaprime,rbetageom,rbetanorm,kumar,beta4,elogit。


实例----------Examples----------


bdata = data.frame(y = rbeta(nn <- 1000, shape1 = exp(0), shape2 = exp(1)))
fit = vglm(y ~ 1, betaff, bdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)  # Useful for intercept-only models[仅截距模型]

# General A and B, and with a covariate[一般A和B,并与协变量]
bdata = transform(bdata, x2 = runif(nn))
bdata = transform(bdata, mu = logit(0.5 - x2, inverse = TRUE),
                         prec = exp(3   + x2))  # prec == phi[PREC ==披]
bdata = transform(bdata, shape2 = prec * (1-mu),
                         shape1 = mu * prec)
bdata = transform(bdata, y = rbeta(nn, shape1 = shape1, shape2 = shape2))
bdata = transform(bdata, Y = 5 + 8 * y)   # From 5 to 13, not 0 to 1[从5到13,而不是0到1的]
fit = vglm(Y ~ x2, betaff(A = 5, B = 13), bdata, trace = TRUE)
coef(fit, matrix = TRUE)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 21:49 , Processed in 0.025070 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表