找回密码
 注册
查看: 323|回复: 0

R语言 verification包 IS()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 15:21:56 | 显示全部楼层 |阅读模式
IS(verification)
IS()所属R语言包:verification

                                        Alternative Intensity Scale Function
                                         替代烈度表功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Beta version of intensity scale function created by
所创造的强度等级功能的Beta版


用法----------Usage----------


IS(frcs, obs, thres)



参数----------Arguments----------

参数:frcs
Forecast matrix.  Must be of $2^n$ dimensions.
预测矩阵。必须是$ 2 ^ n $的尺寸。


参数:obs
Observation matrix. Must be of $2^n$ dimensions.
观察矩阵。必须是$ 2 ^ n $的尺寸。


参数:thres
A vector of thresholds to be considered.  By default, the percentiles 0, 90 are used.  
要考虑的矢量阈值。默认情况下,使用的百分0,90。


值----------Value----------

SSul = SSul, MSEul = MSEul, l.frcs = dim(frcs)[1], thres = thres, Bias = Bu, BR = BRu
SSul = SSul,MSEul = MSEul,l.frcs = DIM(FRCS)[1],THRES = THRES,BIAS =卜,BR = BRU


参数:SSul
Skill score as matrix.  The rownames are the thresholds, the colnames are $n$ where $2^n$ is the spatial scale of the skill score decomposition.
矩阵的技巧得分。行名的阈值,列名是$ N $ $ 2 ^ n $是空间尺度的技巧得分分解。


参数:MSEul
A matrix with the mean squared error of the forecast
A矩阵的平均平方误差的预测


参数:l.frcs
Number of rows in forecast.  Used in plotting routine.
行的预测数。在绘图程序。


参数:thres
Thresholds used in model
阈值模型


参数:Bias
Bias
偏见


参数:BR
BR
BR


注意----------Note----------

THIS IS A DRAFT FORM OF THIS FUNCTION.  IT MAY CHANGE AND REPLACE int.scale.verify
这是一个草案FORM此功能。它可能会改变,更换int.scale.verify


(作者)----------Author(s)----------


Barbara Casati <barbara.casati@ec.gc.ca>



参考文献----------References----------

the verification of spatial precipitation forecasts, Meteorol. Appl, vol  11, 141-154 pp.

参见----------See Also----------

int.scale.verify and plot.int.scale
int.scale.verify和plot.int.scale


实例----------Examples----------


#####################################################[################################################## ##]
# files.dat: read, create and write[files.dat:阅读,创建和写]
######################################################[################################################## ###]

IS.NIMROD.case <- IS(forecast.dat, analysis.dat,c(0, 2^seq(-5,6)))
NIMROD.SSul <- IS.NIMROD.case$SSul
colnames(NIMROD.SSul) <- paste(c("0","1/32", "1/16", "1/8", "1/4", "1/2", "1",
                "2","4", "8", "16", "32", "64"),"mm/h")
rownames(NIMROD.SSul) <- paste(5*2^seq(0,8),"km")
# write.table(NIMROD.SSul,file="NIMROD.SSul.dat")[write.table(NIMROD.SSul,文件=“NIMROD.SSul.dat”的)]

NIMROD.MSEul <- IS.NIMROD.case$MSEul
colnames(NIMROD.MSEul) <- paste(c("0","1/32", "1/16", "1/8", "1/4", "1/2", "1",
                "2","4", "8", "16", "32", "64"),"mm/h")
rownames(NIMROD.MSEul) <- paste(5*2^seq(0,8),"km")

###################################################[##################################################]
# colorbars for the images[colorbars为图像]
###################################################[##################################################]

Nimrod.colorbar <- function(){
colors = c(0,8,8,8,8,5,5,4,4,4,2,2,2)
xlimbar = c(7,8)
ylimbar = c(46.5,59.5)
barlabels = c("0","1/32", "1/16", "1/8", "1/4", "1/2", "1", "2", "4", "8", "16",
"32", "64","128")
ycoord = seq(ylimbar[1],ylimbar[2],length=length(colors)+1)
for(i in seq(1,length(colors))){
polygon(x=c(xlimbar[1],xlimbar[1],xlimbar[2],xlimbar[2],xlimbar[1]),
y=c(ycoord[i],ycoord[i+1],ycoord[i+1],ycoord[i],ycoord[i]),
col = colors[i])}
axis(4,at=ycoord,labels=barlabels,las=TRUE)
mtext("mm/h",line=1,at=c(7.5,61),cex=1.5)
}

colorbar <- function(xlimbar,ylimbar,colors,barlabels){
ycoord = seq(ylimbar[1],ylimbar[2],length=(length(colors)+1))
for(i in seq(1,length(colors))){
polygon(x=c(xlimbar[1],xlimbar[1],xlimbar[2],xlimbar[2],xlimbar[1]),
y=c(ycoord[i],ycoord[i+1],ycoord[i+1],ycoord[i],ycoord[i]),
col = colors[i])}
axis(4,at=ycoord,labels=barlabels,las=TRUE)
}

#  images[图像]
#[]
   par(oma=c(3,3,3,3), mfrow = c(1,1) )
   image(seq(-12,8,length=256), seq(46.5,59.5,length=256), analysis.dat,
       xlim = c(-12,8), ylim = c(46.5,59.5), zlim = c(0,128),
       xlab = "longitude", ylab = "latitude",main="Nimrod analysis 29/05/99 15:00",
       col=c(0,8,8,8,8,5,5,4,4,4,2,2,2),breaks=c(0,2^seq(-5,7,1)))
   world(xlim=c(-12,8),ylim=c(46.5,59.5), add = TRUE, lwd = 3)
   Nimrod.colorbar()

#[]
   par(oma=c(3,3,3,3))
   image(seq(-12,8,length=256), seq(46.5,59.5,length=256), forecast.dat,
       xlim = c(-12,8), ylim = c(46.5,59.5), zlim = c(0,128),
       xlab = "longitude", ylab = "latitude",main="Nimrod forecast T+3h",
       col=c(0,8,8,8,8,5,5,4,4,4,2,2,2),breaks=c(0,2^seq(-5,7,1)))
   world(xlim=c(-12,8),ylim=c(46.5,59.5), add = TRUE, lwd = 3)
   Nimrod.colorbar()
#[]
    par(oma=c(3,3,3,3))
    image(seq(-6,6,1),seq(1,9),t(NIMROD.SSul),xlim=c(-6.5,8.5),zlim=c(-4,1),
        xlab="threshold (mm/h)",ylab="scale (km)",axes=FALSE,
        main="Intensity-Scale Skill Score", col=c(4,4,4,4,5,5,5,5,7,7))
    axis(1,at = seq(-6,6,1), labels = c("0","1/32", "1/16", "1/8", "1/4", "1/2",
"1", "2","4", "8", "16", "32", "64"))
    axis(2,at = seq(1,9),labels=5*2^seq(0,8,1))
    rect(xleft=-6.5, ybottom=0.5, xright=6.5, ytop=9.5)

colorbar(xlimbar=c(7.5,8.5),ylimbar=c(0.5,9.5),colors=c(4,4,4,4,5,5,5,5,7,7),barlabels=seq(-4,1,0.5))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 22:26 , Processed in 0.020704 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表