找回密码
 注册
查看: 431|回复: 0

R语言 vegclust包 vegclustIndex()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 15:17:06 | 显示全部楼层 |阅读模式
vegclustIndex(vegclust)
vegclustIndex()所属R语言包:vegclust

                                         Compute fuzzy evaluation statistics
                                         计算模糊综合评价的统计信息

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Computes several evaluation statistics on the fuzzy clustering results on objects of class vegclust.
计算几类vegclust对象的模糊聚类结果的评估统计。


用法----------Usage----------


vegclustIndex(y)



参数----------Arguments----------

参数:y
An object of class vegclust or a membership matrix.
对象的类vegclust或隶属度矩阵。


Details

详细信息----------Details----------

These statistics were conceived to be computed on fuzzy partitions, such as the ones coming from Fuzzy C-means (Bezdek 1981). Maximum values of PCN or minimum values of PEN can be used as criteria to choose the number of clusters.
这些统计数字是设想计算模糊的分区,如那些来自模糊C-均值(贝兹德克1981)。 PCN或最小值的PEN的最大值可被用作标准来选择的聚类数。


值----------Value----------

Returns an vector of four values: partition coefficient (PC), normalized partition coefficient (PCN), partition entropy (PE) and normalized partition entropy (PEN).
返回一个矢量的四个值:分配系数(PC),归一化的分配系数(PCN),分区熵(PE)和归一化的划分熵(PEN)。


(作者)----------Author(s)----------



Miquel De C谩ceres, Forest Science Center of Catalonia




参考文献----------References----------

Bezdek, J. C. (1981) Pattern recognition with fuzzy objective functions. Plenum Press, New York.

参见----------See Also----------

cmeans,vegclust
cmeans,vegclust


实例----------Examples----------



# Loads data  [数据加载]
data(wetland)
  
# This equals the chord transformation (see also 'normalize' option in \code{\link{decostand}} from the vegan package)[这等于和弦转换(参见标准化选项\ {\的链接{decostand}}从素食包的代码)]
wetland.chord = as.data.frame(sweep(as.matrix(wetland), 1, sqrt(rowSums(as.matrix(wetland)^2)), "/"))

# Create noise clustering with 2, 3 and 4 clusters. Perform 10 starts from random seeds and keep the best solution[创建噪音聚类2,第3和第4聚类。进行10次随机种子开始,并保持最佳的解决方案]
wetland.fcm2 = vegclust(wetland.chord, mobileCenters=2, m = 1.2, method="FCM", nstart=10)
wetland.fcm3 = vegclust(wetland.chord, mobileCenters=3, m = 1.2, method="FCM", nstart=10)
wetland.fcm4 = vegclust(wetland.chord, mobileCenters=4, m = 1.2, method="FCM", nstart=10)

# Compute statistics. Both PCN and PEN indicate that three groups are more advisable than 2 or 4[计算统计。 PCN和PEN都表明,三组是更明智的2个或4个]
print(vegclustIndex(wetland.fcm2))
print(vegclustIndex(wetland.fcm3))
print(vegclustIndex(wetland.fcm4))


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-27 00:18 , Processed in 0.028709 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表