add1.cca(vegan)
add1.cca()所属R语言包:vegan
Add or Drop Single Terms to a Constrained Ordination Model
添加或删除单条款约束排序模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Compute all single terms that can be added or dropped from a constrained ordination model.
计算所有条款约束协调模型,可以添加或删除。
用法----------Usage----------
## S3 method for class 'cca'
add1(object, scope, test = c("none", "permutation"),
pstep = 100, perm.max = 200, ...)
## S3 method for class 'cca'
drop1(object, scope, test = c("none", "permutation"),
pstep = 100, perm.max = 200, ...)
参数----------Arguments----------
参数:object
A constrained ordination object from cca, rda or capscale.
受约束的协调对象cca,rda或capscale。
参数:scope
A formula giving the terms to be considered for adding or dropping; see add1 for details.
公式,添加或删除的条款被认为add1的详细信息。
参数:test
Should a permutation test added using anova.cca.
如果置换检验补充使用anova.cca。
参数:pstep
Number of permutations in one step, passed as argument step to anova.cca.
号码的排列在一个步骤中,传递的参数step到anova.cca。
参数:perm.max
Maximum number of permutation in anova.cca.
在anova.cca的最大数量的排列。
参数:...
Other arguments passed to add1.default, drop1.default, and anova.cca.
其他参数传递给add1.default,drop1.default和anova.cca。
Details
详细信息----------Details----------
With argument test = "none" the functions will only call add1.default or drop1.default. With argument test = "permutation" the functions will add test results from anova.cca. Function drop1.cca will call anova.cca with argument by = "margin". Function add1.cca will implement a test for single term additions that is not directly available in anova.cca.
参数test = "none"的功能只调用“add1.default或drop1.default。参数test = "permutation"的功能将增加从anova.cca的测试结果。将调用功能drop1.ccaanova.cca与参数by = "margin"。函数add1.cca将实施单一的术语增加,是不能直接使用在anova.cca测试。
Functions are used implicitly in step and ordistep. The deviance.cca and deviance.rda used in step have no firm basis, and setting argument test = "permutation" may help in getting useful insight into validity of model building. Function ordistep calls alternately drop1.cca and add1.cca with argument test = "permutation" and selects variables by their permutation P-values. Meticulous use of add1.cca and drop1.cca will allow more judicious model building.
函数隐式地使用step和ordistep。 deviance.cca和deviance.rda使用step没有坚实的基础,并设置参数test = "permutation"可以帮助建立模型的有效性得到有益的启示。函数ordistep调用交替drop1.cca和add1.cca参数test = "permutation"和选择他们的排列P值的变量。使用add1.cca和drop1.cca将允许更明智的模型建立细致。
The default perm.max is set to a low value, because permutation tests can take a long time. It should be sufficient to give a impression on the significances of the terms, but higher values of perm.max should be used if P values really are important.
默认perm.max被设置为一个较低的值,因为排列的测试可能需要很长的时间。它应该是足够的,得到的印象术语的意义,但更高的值perm.max应用于如果P值真的是重要的。
值----------Value----------
Returns a similar object as add1 and drop1.
add1和drop1返回一个类似的对象。
(作者)----------Author(s)----------
Jari Oksanen
参见----------See Also----------
add1, drop1 and anova.cca for basic methods. You probably need these functions with step and link{ordistep}. Functions deviance.cca and extractAIC.cca are used to produce the other arguments than test results in the output. Functions cca, rda and
add1,drop1和anova.cca的基本方法。您可能需要这些功能,step和link{ordistep}。功能deviance.cca和extractAIC.cca被用来生产其他参数比输出的测试结果。功能cca,rda和
实例----------Examples----------
data(dune)
data(dune.env)
## Automatic model building based on AIC but with permutation tests[AIC#自动模式建设的基础上,但与排列测试]
step(cca(dune ~ 1, dune.env), reformulate(names(dune.env)), test="perm")
## see ?ordistep to do the same, but based on permutation P-values[#看到了吗?ordistep做相同,但根据排列的P-值]
## Not run: [#不运行:]
ordistep(cca(dune ~ 1, dune.env), reformulate(names(dune.env)), perm.max=200)
## End(Not run)[#(不执行)]
## Manual model building[#手动模式建设]
## -- define the maximal model for scope[ - 定义最大的模型范围]
mbig <- rda(dune ~ ., dune.env)
## -- define an empty model to start with[# - 定义一个空模型开始]
m0 <- rda(dune ~ 1, dune.env)
## -- manual selection and updating[ - 手动选择和更新]
add1(m0, scope=formula(mbig), test="perm")
m0 <- update(m0, . ~ . + Management)
add1(m0, scope=formula(mbig), test="perm")
m0 <- update(m0, . ~ . + Moisture)
## -- included variables still significant?[# - 包括变量仍然显著?]
drop1(m0, test="perm")
add1(m0, scope=formula(mbig), test="perm")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|