DaytonSurvey(vcdExtra)
DaytonSurvey()所属R语言包:vcdExtra
Dayton Student Survey on Substance Use
代顿学生对药物使用调查
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This data, from Agresti (2002), Table 9.1, gives the result of a 1992 survey in Dayton Ohio of 2276 high school seniors on whether they had ever used alcohol, cigarettes and marijuana.
阿格雷斯蒂(2002年),表9.1给出了这个数据,1992年在美国俄亥俄州代顿的2276的高年级学生,是否他们曾经用酒精,香烟和大麻的调查结果。
用法----------Usage----------
data(DaytonSurvey)
格式----------Format----------
A frequency data frame with 32 observations on the following 6 variables.
32个观察下面的6个变量的数据框的频率。
cigarette a factor with levels Yes No
cigarette的一个因素水平YesNo
alcohol a factor with levels Yes No
alcohol的一个因素水平YesNo
marijuana a factor with levels Yes No
marijuana的一个因素水平YesNo
sex a factor with levels female male
sex的一个因素水平femalemale
race a factor with levels white other
race的一个因素水平whiteother
Freq a numeric vector
Freq一个数值向量
Details
详细信息----------Details----------
Agresti uses the letters G (sex), R (race), A (alcohol), C (cigarette), M (marijuana) to refer to the table variables, and this usage is followed in the examples below.
阿格雷斯蒂使用的字母G(sex),R(race),A(alcohol),C(cigarette),M(marijuana)指表变量,这种用法是随后在下面的实施例中。
Background variables include sex and race of the respondent (GR), typically treated as explanatory, so that any model for the full table should include the term sex:race. Models for the reduced table, collapsed over sex and race are not entirely unreasonable, but don't permit the estimation of the effects of these variables on the responses.
背景变量包括sex和race的受访者(GR),通常被视为解释的,所以,任何型号的全表应包括术语sex:race。减少表的模型,崩溃了sex和race是不是完全没有道理,但不容许估计这些变量对响应的影响。
The full 5-way table contains a number of cells with counts of 0 or 1, as well as many cells with large counts, and even the ACM table collapsed over GR has some small cell counts. Consequently, residuals for these models in mosaic displays are best represented as standardized (adjusted) residuals.
完整的5路表包含多个单元的计数为0或1,以及与大计数的许多单元,甚至的ACM表倒塌超过GR具有一些小的单元计数。因此,拼接显示这些模型的残差标准(调整后)残留物中的杰出代表。
源----------Source----------
Agresti, A. (2002). Categorical Data Analysis, 2nd Ed., New York: Wiley-Interscience, Table 9.1, p. 362.
阿格雷斯蒂,A.(2002)。分类数据分析,第二版,纽约:Wiley-Interscience出版,表9.1,P。 362。
参考文献----------References----------
https://home.comcast.net/~lthompson221/Splusdiscrete2.pdf
实例----------Examples----------
data(DaytonSurvey)
mod.GR <- glm(Freq ~ . + sex*race, data=DaytonSurvey, family=poisson) # mutual independence + GR[相互独立+ GR]
mod.homog.assoc <- glm(Freq ~ .^2, data=DaytonSurvey, family=poisson) # homogeneous association[同质化协会]
# collapse over sex and race[崩溃对性别和种族]
Dayton.ACM <- aggregate(Freq ~ cigarette+alcohol+marijuana, data=DaytonSurvey, FUN=sum)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|