找回密码
 注册
查看: 421|回复: 0

R语言 vars包 Phi()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 14:29:02 | 显示全部楼层 |阅读模式
Phi(vars)
Phi()所属R语言包:vars

                                        Coefficient matrices of the MA represention
                                         MA“重要的系数矩阵

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Returns the estimated coefficient matrices of the moving average representation of a stable VAR(p), of an SVAR as an array or a converted VECM to VAR.
返回移动平均线表示稳定的VAR(P)的估计系数矩阵,的SVAR作为一个数组或转换VECM VAR。


用法----------Usage----------


## S3 method for class 'varest'
Phi(x, nstep=10, ...)
## S3 method for class 'svarest'
Phi(x, nstep=10, ...)
## S3 method for class 'svecest'
Phi(x, nstep=10, ...)
## S3 method for class 'vec2var'
Phi(x, nstep=10, ...)



参数----------Arguments----------

参数:x
An object of class "varest", generated by VAR(), or an object of class "svarest", generated by SVAR(), or an object of class "svecest", generated by SVEC(), or an object of class "vec2var", generated by vec2var().   
varest,或一个类的对象所产生的对象,所产生的VAR(),或对象类的svarest类SVAR(), “”svecest,所产生的SVEC()或对象类的vec2var,所产生的vec2var()。


参数:nstep
An integer specifying the number of moving error coefficient matrices to be calculated.
一个整数,指定移动的误差系数矩阵的数量来计算的。


参数:...
Currently not used.
目前没有使用。


Details

详细信息----------Details----------

If the process \bold{y}_t is stationary (i.e. I(0), it has a Wold moving average representation in the form of:
如果\bold{y}_t是固定的(即I(0),它有一个世界移动平均线表示的形式:

whith Φ_0 = I_k and the matrices Φ_s can be computed recursively according to:
蒙山Φ_0 = I_k和矩阵Φ_s的可以递归计算依据:

whereby A_j are set to zero for j > p. The matrix elements represent the impulse responses of the components of \bold{y}_t with respect to the shocks \bold{u}_t. More precisely, the (i, j)th element of the matrix &Phi;_s mirrors the expected response of y_{i, t+s} to a unit change of the variable y_{jt}. <br> In case of a SVAR, the impulse response matrices are given by:
据此A_j零j > p。矩阵元素表示的组件\bold{y}_t的脉冲响应相对于冲击\bold{u}_t。更精确地,(i, j)个元素的矩阵&Phi;_s镜像的预期响应y_{i, t+s}的单位变化的变量y_{jt}。 <br>在一个SVAR的情况下,脉冲响应矩阵为:

Albeit the fact, that the Wold decomposition does not exist for nonstationary processes, it is however still possible to compute the &Phi;_i matrices likewise with integrated variables or for the level version of a VECM. However, a convergence to zero of &Phi;_i as i tends to infinity is not ensured; hence some shocks may have a permanent effect.  
Wold分解的事实,虽然不存在的非平稳过程,但仍然有可能&Phi;_i同样的综合变量或VECM级版本的矩阵计算。然而,一个收敛到零的&Phi;_i趋于无穷大,因为我不能保证,因此一些冲击可能有一个永久的效果。


值----------Value----------

An array with dimension (K \times K \times nstep + 1) holding the estimated coefficients of the moving average representation.
维阵列,(K \times K \times nstep + 1)移动平均线表示的估计系数。


注意----------Note----------

The first returned array element is the starting value, i.e., &Phi;_0.
第一个返回的数组元素的初始值,即,&Phi;_0。


(作者)----------Author(s)----------


Bernhard Pfaff



参考文献----------References----------

University Press, Princeton.
Analysis, Springer, New York.

参见----------See Also----------

Psi, VAR, SVAR, vec2var, SVEC
Psi,VAR,SVAR,vec2var,SVEC


实例----------Examples----------


data(Canada)
var.2c <- VAR(Canada, p = 2, type = "const")
Phi(var.2c, nstep=4)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-27 14:52 , Processed in 0.020385 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表