randomVarImpsRF(varSelRF)
randomVarImpsRF()所属R语言包:varSelRF
Variable importances from random forest on permuted class labels
随机森林置换类标签的变量的重要性
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Return variable importances from random forests fitted to data sets like the original except class labels have been randomly permuted.
从安装到数据集和原来一样,除了类的标签被随机置换的随机森林,返回变量的重要性。
用法----------Usage----------
randomVarImpsRF(xdata, Class, forest, numrandom = 100,
whichImp = "impsUnscaled", usingCluster = TRUE,
TheCluster = NULL, ...)
参数----------Arguments----------
参数:xdata
A data frame or matrix, with subjects/cases in rows and variables in columns. NAs not allowed.
一个数据框或矩阵的行和列中的变量,与科目/箱。来港定居不允许的。
参数:Class
The dependent variable; must be a factor.
因变量;必须是一个因素。
参数:forest
A previously fitted random forest (see randomForest).
先前安装的随机森林(见randomForest“)。
参数:numrandom
The number of random permutations of the class labels.
类标签的随机排列的数量。
参数:whichImp
A vector of one or more of impsUnscaled, impsScaled, impsGini, that correspond, respectively, to the (unscaled) mean decrease in accuracy, the scaled mean decrease in accuracy, and the Gini index. See below and randomForest, importance and the references for further explanations of the measures of variable importance.
一个向量的一个或多个impsUnscaled,impsScaled,impsGini“,分别对应(无标度),平均精度下降,减少的规模平均的准确性,和基尼索引。请参阅下面randomForest,importance和引用的措施作进一步的解释变量的重要性。
参数:usingCluster
If TRUE use a cluster to parallelize the calculations.
如果是TRUE,使用一个聚类并行计算。
参数:TheCluster
The name of the cluster, if one is used.
聚类的名称,如果使用了。
参数:...
Not used.
未使用。
Details
详细信息----------Details----------
The measure of variable importance most often used is based on the decrease of classification accuracy when values of a variable in a node of a tree are permuted randomly (see references); we use the unscaled version —see our paper and supplementary material. Note that, by default, importance returns the scaled
最常用的衡量变量重要性的基础上的分类精度下降时的一个节点树中的一个变量的值是随机置换(请参阅参考资料),我们使用不成比例的版本文件和补充材料。请注意,默认情况下,importance返回的规模
值----------Value----------
An object of class randomVarImpsRF, which is a list with one to three named components. The name of each component corresponds to the types of variable importance measures selected (i.e., impsUnscaled, impsScaled, impsGini).
类randomVarImpsRF的一个目的,这是一个具有一至三个命名的组件列表。每个组件的名称,对应于变量重要性的类型的测量选择(即impsUnscaled,impsScaled,impsGini)。
Each component is a matrix, of dimensions number of variables by numrandom; each element (i,j) of this matrix is the variable importance for variable i and random permutation j.
每个组件是一个矩阵,尺寸由变量数numrandom;每个元素(i,j)此矩阵为变量i和随机置换j的是变量重要性。
(作者)----------Author(s)----------
Ramon Diaz-Uriarte <a href="mailto:rdiaz02@gmail.com">rdiaz02@gmail.com</a>
参考文献----------References----------
Breiman, L. (2001) Random forests. Machine Learning, 45, 5–32.
Diaz-Uriarte, R. and Alvarez de Andres, S. (2005) Variable selection from random forests: application to gene expression data. Tech. report. http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html
Svetnik, V., Liaw, A. , Tong, C & Wang, T. (2004) Application of Breiman's random forest to modeling structure-activity relationships of pharmaceutical molecules. Pp. 334-343 in F. Roli, J. Kittler, and T. Windeatt (eds.). Multiple Classier Systems, Fifth International Workshop, MCS 2004, Proceedings, 9-11 June 2004, Cagliari, Italy. Lecture Notes in Computer Science, vol. 3077. Berlin: Springer.
参见----------See Also----------
randomForest, varSelRF, varSelRFBoot, varSelImpSpecRF, randomVarImpsRFplot
randomForest,varSelRF,varSelRFBoot,varSelImpSpecRF,randomVarImpsRFplot
实例----------Examples----------
x <- matrix(rnorm(45 * 30), ncol = 30)
x[1:20, 1:2] <- x[1:20, 1:2] + 2
cl <- factor(c(rep("A", 20), rep("B", 25)))
rf <- randomForest(x, cl, ntree = 200, importance = TRUE)
rf.rvi <- randomVarImpsRF(x, cl,
rf,
numrandom = 20,
usingCluster = FALSE)
randomVarImpsRFplot(rf.rvi, rf)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|