找回密码
 注册
查看: 395|回复: 0

R语言 USPS包 SPSoutco()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 14:18:44 | 显示全部楼层 |阅读模式
SPSoutco(USPS)
SPSoutco()所属R语言包:USPS

                                        Examine Treatment Differences on an Outcome Measure in Supervised Propensiy Scoring
                                         检查待遇上的差别,衡量的结果在监督Propensiy评估

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Examine Within-Bin Treatment Differences on an Outcome Measure and Average these
检查内宾待遇上的差别,衡量的结果和平均这些


用法----------Usage----------


  SPSoutco(dframe, trtm, qbin, yvar, faclev=3)



参数----------Arguments----------

参数:dframe
Name of augmented data.frame written to the appn="" argument of SPSlogit().
增强的数据框的名称写的APPN =“”的说法的SPSlogit()。


参数:trtm
Name of treatment factor variable.
处理因素变量的名称。


参数:qbin
Name of variable containing the PS bin number for each patient.
为每一个病人的变量名包含PS本数。


参数:yvar
Name of an outcome Y variable.
结果Y变量的名称。


参数:faclev
Maximum number of different numerical values an X-covariate can assume without automatically being converted into a "factor" variable; faclev=1 causes a binary indicator to be treated as a continuous variable determining an average or proportion.
的最大数目的不同的数值的X-协变量可以假设没有自动被转换成一个“因子”变量; faclev = 1导致二进制指示器被处理作为一个连续变量来确定平均或比例。


Details

详细信息----------Details----------

Once the second phase of Supervised Propensity Scoring confirms, using SPSbalan(), that X-covariate Distributions have been Balanced Within-Bins, the third phase can start: Examining Within-Bin Outcome Difference due to Treatment and Averaging these Differences across Bins. Graphical displays of SPSoutco() results feature R barplot() invocations.
一旦确认,第二阶段的监督倾向评分使用SPSbalan(),X-协分布均衡的垃圾桶内,就可以开始第三阶段:检查在滨结果差异对因治疗,平均间的差异箱。图形显示的SPSoutco()的结果配:řbarplot()调用。


值----------Value----------

An output list object of class SPSoutco:
输出列表对象类SPSoutco:


参数:dframe
Name of augmented data.frame written to the appn="" argument of SPSlogit().
增强的数据框的名称写的APPN =“”的说法的SPSlogit()。


参数:trtm
Name of the two-level treatment factor variable.
两个级别的处理因素变量的名称。


参数:yvar
Name of an outcome Y variable.
结果Y变量的名称。


参数:bins
Number of variable containing bin numbers.
号码的变量含区号码。


参数:PStdif
Character string describing the treatment difference.
字符串描述治疗效果差。


参数:rawmean
Unadjusted outcome mean by treatment group.
未经调整的结果治疗组的意思。


参数:rawvars
Unadjusted outcome variance by treatment group.
未经调整的结果差异治疗组。


参数:rawfreq
Number of patients by treatment group.
治疗组的患者数。


参数:ratdif
Unadjusted mean outcome difference between treatments.
未经调整的平均结果治疗之间的差异。


参数:ratsde
Standard error of unadjusted mean treatment difference.
未经调整的平均治疗差异的标准误差。


参数:binmean
Unadjusted mean outcome by cluster and treatment.
未经调整的平均结果的聚类和治疗。


参数:binvars
Unadjusted variance by cluster and treatment.
未经调整的方差的聚类和治疗。


参数:binfreq
Number of patients by bin and treatment.
bin和治疗的患者数。


参数:awbdif
Across cluster average difference with cluster size weights.
在聚类簇的大小重量平均差异。


参数:awbsde
Standard error of awbdif.
的标准误差awbdif。


参数:wwbdif
Across cluster average difference, inverse variance weights.
在聚类平均水平的差异,逆差额的权重。


参数:wwbsde
Standard error of wwbdif.
的标准误差wwbdif。


参数:form
Formula for overall, marginal treatment difference on X-covariate.
总体而言,X-协边际治疗效果差的公式。


参数:faclev
Maximum number of different numerical values an X-covariate can assume without automatically being converted into a "factor" variable; faclev=1 causes a binary indicator to be treated as a continuous variable determining an average or proportion.
的最大数目的不同的数值的X-协变量可以假设没有自动被转换成一个“因子”变量; faclev = 1导致二进制指示器被处理作为一个连续变量来确定平均或比例。


参数:youtype
"contin"uous => only next six outputs; "factor" => only last four outputs.
“继续”uous =>未来6个输出;“因子”=>最后四个输出。


参数:aovdiff
ANOVA output for marginal test.
ANOVA输出的边际测试。


参数:form2
Formula for differences in X due to bins and to treatment nested within bins.
由于在X分歧箱和垃圾桶内嵌套的治疗公式。


参数:bindiff
ANOVA summary for treatment nested within bin.
ANOVA摘要垃圾桶内嵌套的治疗。


参数:pbindif
Unadjusted treatment difference by cluster.
未经调整的聚类治疗效果差。


参数:pbinsde
Standard error of the unadjusted difference by cluster.
未经调整的差异进行聚类的标准误差。


参数:pbinsiz
Cluster radii measure: square root of total number of patients.
聚类半径的措施:患者总数的平方根。


参数:factab
Marginal table of counts by Y-factor level and treatment.
边际表的计数Y-因子水平和治疗。


参数:tab
Three-way table of counts by Y-factor level, treatment and bin.
三路表的计数Y-因子水平,治疗和bin。


参数:cumchi
Cumulative Chi-Square statistic for interaction in the three-way, nested table.
累积的卡方统计的互动中三路,嵌套表。


参数:cumdf
Degrees of-Freedom for the Cumulative Chi-Squared.
累积卡方的自由程度。


(作者)----------Author(s)----------


Bob Obenchain <wizbob@att.net>



参考文献----------References----------

in removing bias in observational studies. Biometrics 24: 205-213.

in Observational Studies for Causal Effects. Biometrika 70: 41-55.
Using Subclassification on a Propensity Score. J Amer Stat Assoc 79: 516-524.

参见----------See Also----------

SPSlogit, SPSbalan and SPSnbins.
SPSlogit,SPSbalan和SPSnbins。


实例----------Examples----------


  data(lindner)
  PStreat <- abcix~stent+height+female+diabetic+acutemi+ejecfrac+ves1proc
  logtSPS <- SPSlogit(lindner, PStreat, PSfit, PSrnk, PSbin, appn="lindSPS")

  SPSlifeo <- SPSoutco(lindSPS, abcix, PSbin, lifepres, faclev=1)
  SPSlifeo
  plot(SPSlifeo)   

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-27 19:38 , Processed in 0.022055 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表