找回密码
 注册
查看: 306|回复: 0

R语言 unmarked包 unmarkedFit-class()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 13:27:23 | 显示全部楼层 |阅读模式
unmarkedFit-class(unmarked)
unmarkedFit-class()所属R语言包:unmarked

                                        Class "unmarkedFit"
                                         类“unmarkedFit”

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Contains fitted model information which can be manipulated or  extracted using the methods described below.
包含拟合模型的信息,可以使用下面描述的方法处理或提取。


插槽----------Slots----------




fitType: Object of class "character"
fitType:对象类"character"的




call: Object of class "call"
call:对象类"call"的




formula: Object of class "formula"
formula:对象类"formula"的




data: Object of class "unmarkedFrame"
data:对象类"unmarkedFrame"的




sitesRemoved: Object of class "numeric"
sitesRemoved:对象类"numeric"的




estimates: Object of class "unmarkedEstimateList"
estimates:对象类"unmarkedEstimateList"的




AIC: Object of class "numeric"
AIC:对象类"numeric"的




opt: Object of class "list" containing results from
opt:对象类"list"包含结果




negLogLike: Object of class "numeric"
negLogLike:对象类"numeric"的




nllFun: Object of class "function"
nllFun:对象类"function"的




knownOcc: unmarkedFitOccu only: sites known to be occupied
knownOcc:unmarkedFitOccu唯一的站点被占用




K: unmarkedFitPCount only: upper bound used in integration
K:unmarkedFitPCount的上限整合




mixture: unmarkedFitPCount only: Mixing distribution
mixture:unmarkedFitPCount的只有:混合分布




keyfun: unmarkedFitDS only: detection function used by
keyfun:unmarkedFitDS:检测功能使用




unitsOut: unmarkedFitDS only: density units
unitsOut:unmarkedFitDS只:密度单位


方法----------Methods----------




[ signature(x = "unmarkedFit", i = "ANY", j = "ANY",
[<CODE>签名(X =“unmarkedFit”,“ANY”,J =“ANY”




backTransform signature(obj = "unmarkedFit"): back-transform
backTransformsignature(obj = "unmarkedFit"):变换




coef signature(object = "unmarkedFit"): returns parameter  estimates. type can be one of names(obj), eg 'state' or 'det'.
系数signature(object = "unmarkedFit"):返回参数估计值。类型可以是一个名称(OBJ),例如“国家”或“DET”。




confint signature(object = "unmarkedFit"): Returns confidence
confint signature(object = "unmarkedFit"):返回信心




fitted signature(object = "unmarkedFit"): returns expected
装signature(object = "unmarkedFit"):预期收益




getData signature(object = "unmarkedFit"): extracts data
GETDATA signature(object = "unmarkedFit"):提取数据




getP signature(object = "unmarkedFit"): calculates and extracts
getPsignature(object = "unmarkedFit"):计算和提取




hessian signature(object = "unmarkedFit"): Returns hessian
返回麻麻signature(object = "unmarkedFit"):




linearComb signature(obj = "unmarkedFit",                  coefficients = "matrixOrVector"): Returns estimate and SE on original
linearComb signature(obj = "unmarkedFit",                  coefficients = "matrixOrVector"):返回在原有的估计和SE




mle signature(object = "unmarkedFit"): Same as coef(fit)?
MLEsignature(object = "unmarkedFit"):作为系数(FIT)相同?




names signature(x = "unmarkedFit"): Names of parameter levels
名signature(x = "unmarkedFit"):名称参数水平




nllFun signature(object = "unmarkedFit"): returns negative
nllFun signature(object = "unmarkedFit"):返回负




parboot signature(object = "unmarkedFit"): Parametric
parbootsignature(object = "unmarkedFit"):参数




plot signature(x = "unmarkedFit", y = "missing"): Plots
图signature(x = "unmarkedFit", y = "missing"):图




predict signature(object = "unmarkedFit"): Returns predictions  and standard errors for original data or for covariates in a new
预测signature(object = "unmarkedFit"):返回预测和对原始数据的标准误差的协变量在一个新的




profile signature(fitted = "unmarkedFit"): used by confint
个人资料signature(fitted = "unmarkedFit"):使用confint




residuals signature(object = "unmarkedFit"): returns residuals
残差signature(object = "unmarkedFit"):返回残差




sampleSize signature(object = "unmarkedFit"): returns number
采样大小signature(object = "unmarkedFit"):返回数




SE signature(obj = "unmarkedFit"): returns standard errors
SE signature(obj = "unmarkedFit"):返回标准错误




show signature(object = "unmarkedFit"): concise results
显示signature(object = "unmarkedFit"):简洁结果




summary signature(object = "unmarkedFit"): results with more
总结signature(object = "unmarkedFit")结果更




update signature(object = "unmarkedFit"): refit model with
更新signature(object = "unmarkedFit"):改装模型




vcov signature(object = "unmarkedFit"): returns
vcov signature(object = "unmarkedFit"):返回




smoothed signature(object="unmarkedFitColExt"): Returns the smoothed trajectory from a colonization-extinction model fit.  Takes additional logical argument mean which specifies
平滑signature(object="unmarkedFitColExt"):返回的平滑轨迹从定植灭绝的模型拟合。需要额外的逻辑论证意味着它指定




projected signature(object="unmarkedFitColExt"): Returns the projected trajectory from a colonization-extinction model fit.  Takes additional logical argument mean which specifies
预计signature(object="unmarkedFitColExt"):返回从定植灭绝的模型拟合预测轨迹。需要额外的逻辑论证意味着它指定




logLik signature(object="unmarkedFit"):
logLiksignature(object="unmarkedFit"):




LRT signature(m1="unmarkedFit", m2="unmarkedFit"): Returns the chi-squared statistic, degrees-of-freedom, and p-value from
LRT signature(m1="unmarkedFit", m2="unmarkedFit"):返回的卡方统计,度的自由,p值


注意----------Note----------

This is a superclass with child classes for each fit type
这是一个父类与子类,为每一个合适的类型


实例----------Examples----------


showClass("unmarkedFit")

# Format removal data for multinomPois [格式移动数据multinomPois]
data(ovendata)
ovenFrame <- unmarkedFrameMPois(y = ovendata.list$data,
        siteCovs = as.data.frame(scale(ovendata.list$covariates[,-1])),
        type = "removal")

# Fit a couple of models[适合一对夫妇的车型]
(fm1 <- multinomPois(~ 1 ~ ufp + trba, ovenFrame))
summary(fm1)

# Apply a bunch of methods to the fitted model[一堆的方法来拟合模型]

# Look at the different parameter types[在不同的参数类型]
names(fm1)
fm1['state']
fm1['det']

# Coefficients from abundance part of the model[模型的一部分,从丰富的系数]
coef(fm1, type='state')

# Variance-covariance matrix[方差 - 协方差矩阵]
vcov(fm1, type='state')

# Confidence intervals using profiled likelihood[置信区间异形可能性]
confint(fm1, type='state', method='profile')

# Expected values[预期值]
fitted(fm1)

# Original data[原始数据]
getData(fm1)

# Detection probabilities[检测概率]
getP(fm1)

# log-likelihood[对数似然]
logLik(fm1)

# Back-transform detection probability to original scale[备份变换检测概率原有规模]
# backTransform only works on models with no covariates or [backTransform只适用于没有协变量或模型]
#     in conjunction with linearComb (next example)[在与linearComb(下一个例子)]
backTransform(fm1, type ='det')

# Predicted abundance at specified covariate values[在指定的协变量值的预测丰富]
(lc <- linearComb(fm1, c(Int = 1, ufp = 0, trba = 0), type='state'))
backTransform(lc)

# Assess goodness-of-fit[评估善良的拟合]
parboot(fm1)
plot(fm1)

# Predict abundance at specified covariate values.[在指定的协变量值的预测丰富。]
newdat <- data.frame(ufp = 0, trba = seq(-1, 1, length=10))
predict(fm1, type='state', newdata=newdat)

# Number of sites in the sample[样本中的站点数]
sampleSize(fm1)

# Fit a new model without covariates[安装一个新的协变量的模型,而不]
(fmNull <- update(fm1, formula = ~1 ~1))

# Likelihood ratio test[似然比检验]
LRT(fm1, fmNull)



转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-28 11:58 , Processed in 0.030503 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表