multinomPois(unmarked)
multinomPois()所属R语言包:unmarked
Multinomial-Poisson Mixtures Model
多项泊松混合模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fit the multinomial-Poisson mixture model to data collected using
符合多项泊松混合模型收集的数据使用
用法----------Usage----------
参数----------Arguments----------
参数:formula
double right-hand side formula for detection and abundance covariates, in that order.
双右手边检测和丰富的协变量的公式,按照这个顺序。
参数:data
unmarkedFrame supplying data.
unmarkedFrame提供数据。
参数:starts
vector of starting values.
向量的初始值。
参数:method
Optimization method used by optim.
优化所使用的方法optim。
参数:se
logical specifying whether or not to compute standard errors.
逻辑指定是否计算标准误差。
参数:...
Additional arguments to optim, such as lower and upper bounds
其他参数OPTIM,如上限和下限
Details
详细信息----------Details----------
This function takes advantage of the closed form of the integrated likelihood when a latent Poisson distribution is assumed for abundance at each site and a multinomial distribution is taken for the observation state. Many common sampling methods can be framed in this context. For example, double-observer point counts and removal sampling can be analyzed with this function by specifying the proper multinomial cell probablilities. This is done with by supplying the
此功能利用集成的一个潜在的泊松分布时,假定在每个站点的丰度和多项分布的观察状态的可能性的封闭形式。在此上下文中,可以将被成帧许多共同的取样方法。例如,双观测点数量和去除取样可以使用此功能进行分析指定适当的多项单元probablilities的,。这是与通过供给
值----------Value----------
unmarkedFit object describing the model fit.
描述模型拟合unmarkedFit对象。
(作者)----------Author(s)----------
Ian Fiske
参考文献----------References----------
count survey data. Animal Biodiversity and Conservation, 27(1), 375-386.
<h3>See Also</h3>
实例----------Examples----------
# Simulate independent double observer data[模拟独立的双观察员数据]
nSites <- 50
lambda <- 10
p1 <- 0.5
p2 <- 0.3
cp <- c(p1*(1-p2), p2*(1-p1), p1*p2)
set.seed(9023)
N <- rpois(nSites, lambda)
y <- matrix(NA, nSites, 3)
for(i in 1:nSites) {
y[i,] <- rmultinom(1, N[i], c(cp, 1-sum(cp)))[1:3]
}
# Fit model[拟合模型]
observer <- matrix(c('A','B'), nSites, 2, byrow=TRUE)
umf <- unmarkedFrameMPois(y=y, obsCovs=list(observer=observer),
type="double")
fm <- multinomPois(~observer-1 ~1, umf)
# Estimates of fixed effects[固定效应估计]
e <- coef(fm)
exp(e[1])
plogis(e[2:3])
# Estimates of random effects[随机效应的估计]
re <- ranef(fm, K=20)
#ltheme <- canonical.theme(color = FALSE)[ltheme < - canonical.theme(颜色= FALSE)]
#lattice.options(default.theme = ltheme)[lattice.options(default.theme = ltheme)]
plot(re, layout=c(10,5))
## Real data[#实时数据]
data(ovendata)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
siteCovs=as.data.frame(scale(ovendata.list$covariates[,-1])),
type = "removal")
(fm1 <- multinomPois(~ 1 ~ ufp + trba, ovenFrame))
# Detection probability for a single pass[检测概率为一个单一的通]
backTransform(fm1, type="det")
# Detection probability after 4 removal passes[4去除后通过的检测概率]
rowSums(getP(fm1))
# Empirical Bayes estimates of abundance at first 25 sites[在第25网站的丰富经验Bayes估计]
# Very low uncertainty because p is very high[非常低的不确定性,因为p是非常高的]
plot(ranef(fm1, K=10), layout=c(10,7), xlim=c(-1, 10))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|