uniCoxCV(uniCox)
uniCoxCV()所属R语言包:uniCox
Function to cross-validate a high dimensional Cox survival model using Univariate Shrinkage
功能交叉验证一个高维的的Cox生存模式使用单变量收缩
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Function to cross-validate a high dimensional Cox survival model
功能交叉验证高维Cox生存模型
用法----------Usage----------
uniCoxCV(fit,x,y,status,nfolds=5,folds=NULL)
参数----------Arguments----------
参数:fit
object returned by call to uniCox
返回的对象通过调用uniCox的
参数:x
Feature matrix, n obs by p variables
特征矩阵,n p个变量的OB
参数:y
Vector of n survival times
向量n的生存时间
参数:status
Vector of n censoring indicators (1= died or event occurred, 0=survived, or event was censored)
向量n的审查指标(1 =死亡或事件发生,0 =活了下来,被检察或事件)
参数:nfolds
Number of cross-valdiation folds
号码的交叉valdiation褶皱的
参数:folds
Optional list of sample numbers defining folds
可选列表定义褶皱的样本数
Details
详细信息----------Details----------
This function does cross-validation for a prediction model for survival data with high-dimensional covariates, using the Unvariate Shringae
这个函数做了交叉验证的预测模型高维协变量的生存数据,使用的Unvariate的Shringae
值----------Value----------
A list with components <table summary="R valueblock"> <tr valign="top"><td>devcvm</td> <td> Average drop in CV deviance for each lambda value</td></tr> <tr valign="top"><td>ncallcvm=ncallcvm</td> <td> Average number of features with non-zero wts in the CV, for each lambda value</td></tr> <tr valign="top"><td>se.devcvm</td> <td> Standard error of average drop in CV deviance for each lambda value</td></tr> <tr valign="top"><td>devcv</td> <td> Drop in CV deviance for each lambda value</td></tr> <tr valign="top"><td>ncallcv</td> <td> Number of features with non-zero wts in the CV, for each lambda value</td></tr> <tr valign="top"><td>folds</td> <td> Indices for CV folds</td></tr> <tr valign="top"><td>call</td> <td> Call to this function</td></tr> </table>
组件列表<table summary="R valueblock"> <tr valign="top"> <TD> devcvm</ TD> <TD>平均每个lambda值下降CV偏差</ TD> < / TR> <tr valign="top"> <TD> ncallcvm=ncallcvm</ TD> <TD>的平均数量的CV非零WTS的特点,为每个lambda值</ TD> </ TR > <tr valign="top"> <TD> se.devcvm </ TD> <TD> CV偏差,平均降幅在每个lambda值的标准误差</ TD> </ TR> <TR VALIGN =“顶部“<TD> devcv </ TD> <TD>降的CV偏差为每个lambda值</ TD> </ TR> <tr valign="top"> <TD>ncallcv <TD>功能的CV,每个lambda值非零WTS数/ TD> </ TD> </ TR> <tr valign="top"> <TD> folds</ TD>后CV褶皱的<TD>指数</ TD> </ TR> <tr valign="top"> <TD>call </ TD> <TD>调用这个函数</ TD> </ TR> </ TABLE>
源----------Source----------
Tibshirani, R. Univariate shrinkage in the Cox model for high dimensional data (2009). http://www-stat.stanford.edu/~tibs/ftp/cus.pdf To appear SAGMB.
Tibshirani,R. Cox模型的高维数据(2009年)中的单变量收缩。 http://www-stat.stanford.edu/~TIBS / FTP / cus.pdf的的要出现SAGMB的。
实例----------Examples----------
library(survival)
# generate some data[生成一些数据]
x=matrix(rnorm(200*1000),ncol=1000)
y=abs(rnorm(200))
x[y>median(y),1:50]=x[y>median(y),1:50]+3
status=sample(c(0,1),size=200,replace=TRUE)
# fit uniCox model[适合uniCox模型]
a=uniCox(x,y,status)
# do cross-validation to examine choice of lambda[做交叉验证来检查选择的lambda]
aa=uniCoxCV(a,x,y,status)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|