tweedie-package(tweedie)
tweedie-package()所属R语言包:tweedie
Tweedie Distributions
特威迪分派
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Functions for computing and fitting the Tweedie family of distributions
泰迪家族的分布计算和装配的功能
Details
详细信息----------Details----------
Package:
包装方式:
</td><td align="left"> tweedie
</ TD> <TD ALIGN="LEFT">特威迪
Type:
类型:
</td><td align="left"> Package
</ TD> <TD ALIGN="LEFT">包装
Version:
版本:
</td><td align="left"> 2.1.1
</ TD> <TD ALIGN="LEFT"> 2.1.1
Date:
日期:
</td><td align="left"> 2011-08-06
</ TD> <TD ALIGN="LEFT"> 2011-08-06
License:
许可:
</td><td align="left"> GPL (>=2)
</ TD> <TD ALIGN="LEFT"> GPL(> = 2)
(作者)----------Author(s)----------
Peter K Dunn
Maintainer: Peter K Dunn <pdunn2@usc.edu.au>
参考文献----------References----------
Evaluation of Tweedie exponential dispersion model densities by Fourier inversion. Statistics and Computing, 18, 73–86.
Series evaluation of Tweedie exponential dispersion model densities Statistics and Computing, 15(4). 267–280.
Tweedie family densities: methods of evaluation. Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark, 2–6 July
Exponential dispersion models. Journal of the Royal Statistical Society, B, 49, 127–162.
Theory of Dispersion Models. Chapman and Hall, London.
An index which distinguishes between some important exponential families. Statistics: Applications and New Directions. Proceedings of the Indian Statistical Institute Golden Jubilee International Conference (Eds. J. K. Ghosh and J. Roy), pp. 579-604. Calcutta: Indian Statistical Institute.
实例----------Examples----------
# Generate random numbers[生成随机数]
set.seed(314)
y <- rtweedie( 500, p=1.5, mu=1, phi=1)
# With index p between 1 and 2, this produces continuous[随着索引p 1和2之间,这将产生连续的]
# data with exact zeros[具有确切零的数据]
x <- rnorm( length(y), 0, 1) # Unrelated predictor[无关预测]
# With exact zeros, index p must be between 1 and 2[确切的零,指数p必须是1和2之间]
# Fit the tweedie distribution; expect p about 1.5[适合Tweedie分布;预期P关于1.5]
out <- tweedie.profile( y~1, p.vec=seq(1.1, 1.9, length=9), do.plot=TRUE)
out$p.max
# Plot this distribution[绘制此分布]
tweedie.plot( seq(0, max(y), length=1000), mu=mean(y),
p=out$p.max, phi=out$phi.max)
# Fit the glm[适合GLM]
require(statmod) # Provides tweedie family functions[提供泰迪家族功能]
summary(glm( y ~ x, family=tweedie(var.power=out$p.max, link.power=0) ))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|