找回密码
 注册
查看: 589|回复: 0

R语言 twang包 ps()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 13:07:44 | 显示全部楼层 |阅读模式
ps(twang)
ps()所属R语言包:twang

                                        Propensity score estimation
                                         估计倾向得分

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

ps calculates propensity scores and diagnoses them using  a variety of methods, but centered on using boosted logistic regression as
ps计算倾向得分和诊断,他们使用的是不同的方法,但集中在提高逻辑回归


用法----------Usage----------


ps(formula = formula(data),
   data,
   n.trees = 10000,
   interaction.depth = 3,
   shrinkage = 0.01,
   bag.fraction = 1.0,
   perm.test.iters=0,
   print.level = 2,
   iterlim = 1000,
   verbose = TRUE,
   estimand = "ATE",
   stop.method = c("ks.mean", "es.mean"),
   sampw = NULL, ...)



参数----------Arguments----------

参数:formula
A formula for the propensity score model with the treatment indicator on the left side of the formula and the potential confounding variables on the right side.
为下式的左侧和潜在混杂变量的右侧与治疗指标的倾向评分模型的公式。


参数:data
The dataset, includes treatment assignment as well as covariates
该数据集,包括治疗分配以及协变量


参数:n.trees
number of gbm iterations passed on to gbm  
GBM的迭代通过gbm


参数:interaction.depth
interaction.depth passed on to gbm  
interaction.depth到gbm


参数:shrinkage
shrinkage passed on to gbm  
shrinkage到gbm


参数:bag.fraction
bag.fraction passed on to gbm  
bag.fraction到gbm


参数:perm.test.iters
a non-negative integer giving the number of iterations of the permutation test for the KS statistic. If perm.test.iters=0 then the function returns an analytic approximation to the p-value. Setting perm.test.iters=200 will yield precision to within 3% if the true p-value is 0.05. Use perm.test.iters=500 to be within 2%
一个非负的整数,给出的KS统计量的置换试验的数目的迭代。如果perm.test.iters=0那么该函数返回的解析近似的p值。设置perm.test.iters=200将产生精度在3%以内,如果真正的p值是0.05。使用perm.test.iters=500在2%以内


参数:print.level
the amount of detail to print to the screen  
量的详细信息打印到屏幕上


参数:iterlim
maximum number of iterations for the direct optimization  
最大的迭代次数的直接优化


参数:verbose
if TRUE, lots of information will be printed to monitor the the progress of the fitting  
如果TRUE,信息将被打印到监察的进展配件,


参数:estimand
The causal effect of interest.  Options are "ATE" (average treatment effect), which attempts to estimate the change in the outcome if the treatment were applied to the entire population versus if the control were applied to the entire population, or "ATT" (average treatment effect on  the treated) which attempts to estimate the analogous effect, averaging only over the treated population.
因果关系的兴趣。选项"ATE"(平均治疗效果),它试图估计的结果,如果治疗被应用到整个人口与控制,适用于整个人口的变化,或"ATT"(平均尝试估计类似的效果,只有在处理人口平均处理)的治疗效果。


参数:stop.method
A method or methods of measuring and summarizing balance across  pretreatment variables.  Current options are ks.mean, ks.max, es.mean,  and es.max.  ks refers to the  Kolmogorov-Smirnov statistic and es refers to standardized effect size.  These are summarized across the pretreatment variables by either the maximum (.max) or the mean (.mean).
的方法或方法的测量和总结预处理变量之间的平衡。目前的期权是ks.mean,ks.max,es.mean和es.max。 ks是指柯尔莫哥洛夫 - 斯米尔诺夫统计和es是指标准化规模效应。总结了这些跨预处理变量由最大(.max)或平均值(.mean)。


参数:sampw
Optional sampling weights.  
可选的取样权重。


参数:...
Additional arguments.  Not currently used.
其他参数。当前未使用。


Details

详细信息----------Details----------

formula should be something like "treatment ~ X1 + X2 + X3". The treatment variable should be a 0/1 indicator. There is no need to specify interaction terms in the formula. interaction.depth controls the level of interactions to allow in the propensity score model.
formula应该是类似“治疗~X1 + X2 + X3”。处理变量应该是一个0/1的指标。没有需要指定交互作用项公式中的。 interaction.depth控制水平的互动,允许在倾向评分模型。

Note that — unlike earlier versions of twang — plotting functions  are no longer included in the ps() function. See
请注意 - 不同于早期版本的twang - 绘图功能不再包含在ps()功能。看


值----------Value----------

Returns an object of class ps, a list containing
返回一个对象类ps,一个列表,其中包含


参数:gbm.obj
The returned gbm object
返回的gbm对象


参数:treat
The treatment variable.
处理变量。


参数:desc
a list containing balance tables for each method selected in stop.methods. Includes a component for the unweighted analysis names “unw”. Each desc component includes a list with the following components     
一个列表,其中包含资产负债表的每个方法中选择stop.methods。包括未加权的分析“UNW”的一个组成部分。每个desc组件包括以下组件列表

essThe effective sample size of the control group  
essThe有效样本量的对照组

n.treatThe number of subjects in the treatment group  
治疗组的科目n.treatThe

n.ctrlThe number of subjects in the control group  
在对照组中的一些科目n.ctrlThe

max.esThe largest effect size across the covariates  
max.esThe对面的协变量的影响最大尺寸

mean.esThe mean absolute effect size  
mean.esThe意味着绝对的规模效应

max.ksThe largest KS statistic across the covariates  
max.ksThe协变量之间最大的KS统计

mean.ksThe average KS statistic across the covariates  
mean.ksThe平均KS协变量之间统计

bal.taba (potentially large) table summarizing the quality of the  weights for equalizing the distribution of features across  the two groups. This table is best extracted using the bal.table method. See the help for  bal.table for details on the table's contents  
bal.taba(潜在的大)表总结用于均衡跨越两个组的分布功能的权重的质量。此表是最好的提取,使用bal.table方法。请参阅帮助bal.table的详细信息,表的内容

n.treesThe estimated optimal number of gbm  iterations to optimize the loss function for the associated  stop.methods  
n.treesThe最佳估计数gbm迭代优化的损失函数相关的stop.methods

psa data frame containing the estimated propensity scores. Each column is associated with one of the methods selected in stop.methods  
PSA数据框包含的估计倾向得分。每一列都被与在stop.methods选择的方法之一相关联

wa data frame containing the propensity score weights. Each column is associated with one of the methods selected in stop.methods. If sampling weights are given then these are incorporated into these weights.  
WA数据框包含的倾向得分权重。每一列都被与在stop.methods选择的方法之一相关联。如果取样权重,那么这些被纳入这些权重。

estimandThe estimand of interest (ATT or ATE).           
(ATT或ATE)estimandThe estimand的利益。


参数:datestamp
Records the date of the analysis
记录的分析的日期


参数:parameters
Saves the ps call
保存ps调用


参数:alerts
Text containing any warnings accumulated during the estimation
文本包含任何警告期间积累的估计


参数:iters
A sequence of iterations used in the GBM fits used by plot function.
在GBM的迭代序列适合用于的plot功能。


参数:balance
The balance measures for the pretreatment covariates, with a column for each stop.method.
平衡措施的预处理协变量,一列每个stop.method。


参数:n.trees
Maximum number of trees considered in GBM fit.
的最大数量考虑GBM适合的树木。


参数:data
Data as specified in the data argument.
data参数中指定的数据。


(作者)----------Author(s)----------



Greg Ridgeway <a href="mailto:gregr@rand.org">gregr@rand.org</a>,
Dan McCaffrey <a href="mailto:danielm@rand.org">danielm@rand.org</a>,
Andrew Morral <a href="mailto:morral@rand.org">morral@rand.org</a>,
Lane Burgette <a href="mailto:burgette@rand.org">burgette@rand.org</a>




参考文献----------References----------

with Boosted Regression for Evaluating Adolescent Substance Abuse Treatment,&rdquo; Psychological Methods 9(4):403-425.

参见----------See Also----------

gbm
gbm

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-28 19:01 , Processed in 0.028805 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表