rankByDesirability(TunePareto)
rankByDesirability()所属R语言包:TunePareto
Rank results according to their desirabilities
排名结果,根据他们的desirabilities
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Calculates the desirability index for each Pareto-optimal combination (or for all combinations), and ranks the combinations according to this value. The desirability index was introduced by Harrington in 1965 for multicriteria optimization. Desirability functions specify the desired values of each objective and are aggregated in a single desirability index. We propose using the desire package to create desirability functions (see example below).
计算每个Pareto最优组合的可取性指数为(或所有组合),并根据这个值的组合进行排名。期望指数哈灵顿在1965年推出的多目标优化。可取性功能指定所需的值的每一个目标都聚集在一个单一的期望指数。我们建议使用desire包创建可取性功能(见下面的例子)。
用法----------Usage----------
rankByDesirability(tuneParetoResult,
desirabilityIndex,
optimalOnly = TRUE)
参数----------Arguments----------
参数:tuneParetoResult
A TuneParetoResult object containing the parameter configurations to be examined
ATuneParetoResult对象,其中包含要检查的参数配置
参数:desirabilityIndex
A function accepting a vector of objective values and returning a desirability index in [0,1]. The desire package provides methods to obtain such functions
函数接受一个向量的目标函数值,并返回一个期望指数在[0,1]。 desire包提供了一些方法来获取等功能
参数:optimalOnly
If set to true, only the Pareto-optimal solutions are ranked. Otherwise, all tested solutions are ranked. Defaults to TRUE.
如果设置为true,只有帕累托最优的解决方案的排名。否则,所有的测试解决方案的排名。默认为true。
值----------Value----------
A matrix of objective values with an additional column for the desirability index. The rows of the matrix are sorted according to the index.
指标值与期望指数的一个额外的列的矩阵。根据索引的矩阵中的行进行排序。
参见----------See Also----------
harrington1, harrington2, geometricDI, geometricDI, meanDI, minimumDI
harrington1,harrington2,geometricDI,geometricDI,meanDI,minimumDI
实例----------Examples----------
library(desire)
# optimize the 'cost' parameter of an SVM on[优化的“成本”的SVM参数]
# the 'iris' data set[IRIS数据集]
res <- tunePareto(classifier = tunePareto.svm(),
data = iris[, -ncol(iris)],
labels = iris[, ncol(iris)],
cost=c(0.01,0.05,0.1,0.5,1,5,10,50,100),
objectiveFunctions=list(cvWeightedError(10, 10),
cvSensitivity(10, 10, caseClass="setosa"),
cvSpecificity(10, 10, caseClass="setosa")))
# create desirability functions [创建可取性功能]
d1 <- harrington1(0.99,0.01,0.01,0.99)
d2 <- harrington1(0.01,0.01,0.99,0.99)
d3 <- harrington1(0.01,0.01,0.99,0.99)
# aggregate functions in desirability index[聚合函数期望指数]
di <- geometricDI(d1,d2,d3)
# rank all tuning results according to their desirabilities[排列所有调优的结果根据他们的desirabilities,]
print(rankByDesirability(res,di,optimalOnly=FALSE))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|