找回密码
 注册
查看: 2883|回复: 0

R语言 TTR包 volatility()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 12:55:10 | 显示全部楼层 |阅读模式
volatility(TTR)
volatility()所属R语言包:TTR

                                         Volatility
                                         挥发性

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Selected volatility estimators/indicators; various authors.
波动率估计/指标,不同的作者。


用法----------Usage----------


  volatility(OHLC, n=10, calc="close", N=260, ...)



参数----------Arguments----------

参数:OHLC
Object that is coercible to xts or matrix and contains Open-High-Low-Close prices (or only Close prices, if calc="close").  
XTS或矩阵转换成的对象包含开高 - 低 - 收盘价(或收盘价,如果calc="close")。


参数:n
Number of periods for the volatility estimate.  
期间市场波动的估计数。


参数:calc
The calculation (type) of estimator to use.  
估计使用的计算(类型)。


参数:N
Number of periods per year.  
每年的周期数。


参数:...
Arguments to be passed to/from other methods.  
要传递到/从其他的方法。


Details

详细信息----------Details----------

Close-to-Close Volatility (close)<br> Historical volatility calculation using close-to-close prices.
关闭,关闭波幅(close)<BR>的历史波动率计算使用近距离收盘价。

OHLC Volatility: Garman and Klass (garman.klass)<br> The Garman and Klass estimator for estimating historical volatility assumes Brownian motion with zero drift and no opening jumps (i.e. the opening = close of the previous period). This estimator is 7.4 times more efficient than the close-to-close estimator.
OHLC波幅:加曼和克拉斯(garman.klass)参考加曼和克拉斯布朗运动的假定零点漂移和不开放跳转(即的开放=关闭前一段时间),估计历史波动率估计。这个估计是7.4倍,更有效的贴近密切的估计。

High-Low Volatility: Parkinson (parkinson)<br> The Parkinson formula for estimating the historical volatility of an underlying based on high and low prices.
高 - 低波幅:帕金森(parkinson)参考帕金森公式估计一个基本的历史波幅高,价格低的基础上。

OHLC Volatility: Rogers and Satchell (rogers.satchell)<br> The Roger and Satchell historical volatility estimator allows for non-zero drift, but assumed no opening jump.
OHLC波幅:罗杰斯和萨切尔(rogers.satchell)参考罗杰和萨切尔历史波动率估计允许非零点漂移,但假设没有开跳。

OHLC Volatility: Garman and Klass - Yang and Zhang (gk.yz)<br> This estimator is a modified version of the Garman and Klass estimator that allows for opening gaps.
OHLC波幅:加曼和克拉斯 - 扬和张(gk.yz)<br>这估计是加曼和允许打开缺口的的克拉斯估计,修改后的版本。

OHLC Volatility: Yang and Zhang (yang.zhang)<br> The Yang and Zhang historical volatility estimator has minimum estimation error, and is independent of drift and opening gaps.  It can be interpreted as a weighted average of the Rogers and Satchell estimator, the close-open volatility, and the open-close volatility.
OHLC的波幅:杨和张(yang.zhang)参考杨,张历史波动率估计最低估计错误,并且是独立的漂移和开口间隙。它可以被理解为一个加权平均罗杰斯和萨切尔估计,接近开放式的波动,以及开闭的波动。


值----------Value----------

A object of the same class as OHLC or a vector (if try.xts fails) containing the chosen volatility estimator values.
OHLC或向量(try.xts如果失败),包含所选择的波幅估计值相同的类的一个对象。


(作者)----------Author(s)----------


Joshua Ulrich



参考文献----------References----------

Close-to-Close Volatility (<code>close</code>):<br> http://www.sitmo.com/eq/172<br> OHLC Volatility: Garman Klass (<code>garman.klass</code>):<br> http://www.sitmo.com/eq/402<br> High-Low Volatility: Parkinson (<code>parkinson</code>):<br> http://www.sitmo.com/eq/173<br> OHLC Volatility: Rogers Satchell (<code>rogers.satchell</code>):<br> http://www.sitmo.com/eq/414<br> OHLC Volatility: Garman Klass - Yang Zhang (<code>gk.yz</code>):<br> http://www.sitmo.com/eq/409<br> OHLC Volatility: Yang Zhang (<code>yang.zhang</code>):<br> http://www.sitmo.com/eq/417<br>

参见----------See Also----------

See TR and chaikinVolatility for other volatility measures.
见TR和chaikinVolatility其他波动性措施。


实例----------Examples----------


  data(ttrc)
  ohlc <- ttrc[,c("Open","High","Low","Close")]
  vClose <- volatility(ohlc, calc="close")
  vGK <- volatility(ohlc, calc="garman")
  vParkinson <- volatility(ohlc, calc="parkinson")
  vRS <- volatility(ohlc, calc="rogers")

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-28 22:46 , Processed in 0.018852 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表