FULLoption(TTAinterfaceTrendAnalysis)
FULLoption()所属R语言包:TTAinterfaceTrendAnalysis
Main function
主要功能
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This is the core function of the interface. It receive arguments from the interface (see the function <TTAinterface>) and build regularized time series , perform diagnostics and analyses.
这是核心功能的接口。它接收参数从接口(见的功能<TTAinterface>),建立正规化的时间序列,进行诊断和分析。
用法----------Usage----------
FULLoption(param, depth = NULL, sal = NULL, site = NULL, rawdata = "NO"
, select = "NO" , resume.reg = "NO", test.normality = "NO"
, plotB = "NO", plotZ = "NO", datashow = "NO", help.timestep = "NO"
, auto.timestep = "NO", time.step = NULL, help.aggreg = "NO"
, auto.aggreg = "NO", aggreg = NULL, mix = "YES", outliers.re = "NO"
, na.replace = "NO", start = NULL, end = NULL, months = c(1:12)
, norm = "NO", npsu = 30, autocorr = "NO", spectrum = "NO"
, anomaly = "NO", zsmooth = "NO", local.trend = "NO", test = "MK")
参数----------Arguments----------
参数:param
The name of the parameter you want to analyse it must be the name of the column where are your data. Have to be enter like this : "yourparam".
你要分析它的参数的名称必须是你的数据列的名称。有将输入是这样的:“yourparam”。
参数:depth
If existing, the depth interval where your data will be analyse. If values are different from depth max and depth min, missing value are exclude Depth column must be name as 'DEPTH'. Enter the value like this : c(a,b). For analysis at one specific depth you can enter c(a,a).
如果存在,您的数据将被分析的深度间隔。如果从深度最大和最小深度值是不同的,遗漏值必须排除深度列名作为“深度”。输入的值,像这样:C(A,B)。为了分析在一个特定的深度,可以输入c(α,α)。
参数:sal
Same thing as for the depth Salinity column must be name as 'S'.
同样的事情的深度盐度列必须是S的名称。
参数:site
Labels of sampling site as they appears in the database Enter the value like this c("S1", "S2").
采样点的标签,因为他们出现在数据库中输入的值,像这个C(“S1”,“S2”)。
参数:rawdata
Peform desciptive statistics on raw database, can be "YES" or "NO" (the default).
上的请执行desciptive统计原始数据库,可以用“YES”或“NO”(默认值)。
参数:select
Peform desciptive statistics on selected parameter and site, can be "YES" or "NO" (the default).
上的请执行desciptive统计选定的参数和现场,可以用“YES”或“NO”(默认值)。
参数:resume.reg
Peform desciptive statistics on regularized time series, can be "YES" or "NO" (the default).
上的请执行desciptive统计正规化时间序列,可以是“YES”或“NO”(默认值)。
参数:test.normality
Perform a Shapiro-Wilk normality test on selected parameter, can be "YES" or "NO" (the default).
在选定的参数执行一个夏皮罗 - 威尔克正态性检验的,可以是“YES”或“NO”(默认值)。
参数:plotB
Display a boxplot (by year) of rawdata with outliers identified as cirle, can be "YES" or "NO" (the default).
显示一个盒形图(按年)的RAWDATA与cirle认定为异常值,可以用“YES”或“NO”(默认值)。
参数:plotZ
Display a plot of the regularized time series, can be "YES" or "NO" (the default).
显示的正规化时间序列图,可以用“YES”或“NO”(默认值)。
参数:datashow
Show a table of the regularized data, can be "YES" or "NO" (the default).
显示表的正规化数据,可以是“YES”或“NO”(默认值)。
参数:help.timestep
Display an advice for time step selection, base on the mean time that separate two successive measurments. Can be "YES" or "NO" (the default).
显示一个建议的时间步长的选择,底座上的平均时间是分开的两个连续之衡量。可以是“YES”或“NO”(默认值)。
参数:auto.timestep
Autoexecute the advice without diplay it.
没有陈列保温,自动执行的建议。
参数:time.step
Choice of the time step for data aggregation during the build of the time series, can be "Fortnight", "Semi-fortnight", "Mensual", "Annual" or "Mono-mensual" for an aggregation of the data of a month of all years (e.g. all January data).
数据聚合过程中生成的时间序列,时间步长可以选择“双周”,“半双周”,“Mensual”,“年鉴”或“单mensual”的聚集一个月的所有年份的数据(例如,所有月份数据)。
参数:help.aggreg
Display an advice for method of aggregation selection, base on Wilcoxon p.value between rawdata and the different method. Can be "YES" or "NO" (the default).
显示上:秩p.value之间RAWDATA和不同的方法,碱基聚集选择方法的建议。可以是“YES”或“NO”(默认值)。
参数:auto.aggreg
Autoexecute the advice without diplay it.
没有陈列保温,自动执行的建议。
参数:aggreg
Choice of the method of aggregation during the build of the time series, can be "Mean", "Median", "Max" for maximal value selection or "Quantile" for selection of the quantile 90
选择的方法聚合过程中生成的时间序列,可以“中庸”,“中位数”,“最大”的最大价值选择或选择的90位数的“位数”
参数:mix
Allow to mix the data of all sampling site during analysis? Can be "YES" (the default) or "NO".
允许混合所有采样点的数据分析过程中吗?可以是“YES”(默认值)或“NO”。
参数:outliers.re
Remove the outliers from the rawdata, the outliers list is save in a .csv file. (for outliers visual identification see boxplot section).
删除的rawData的离群值,异常值列表是保存在。csv文件。 (离群的视觉识别盒形图部分)。
参数:na.replace
Replace missing values with median of the corresponding cycle (week, month...) for lags longer than 3 days and linear regression for shorter missed period. Can be "YES" or "NO" (the default).
替换缺失值相应的周期(周,月)的中位数为滞后时间超过3天,错过了时间更短的线性回归。可以是“YES”或“NO”(默认值)。
参数:start
Define the first year of data analysis (by default the first of the database).
定义的第一年的数据分析(默认情况下,数据库)。
参数:end
Define the last year of data analysis (by default the last of the database).
定义数据分析的最后一年(默认情况下,最后的数据库)。
参数:months
Define the months of data analysis (by default the twelve months).
定义个月的数据分析(默认情况下,十二个月内)。
参数:norm
Compute normalised values of nutrients at the salinity npsu for each years, can be "YES" or "NO" (the default).
计算每年的营养在盐度npsu的归一化值,可以是“YES”或“NO”(默认值)。
参数:npsu
Compute normalised values of nutrients at the salinity npsu for each years, 30 by default.
计算每年的营养在盐度npsu的归一化值,默认为30。
参数:autocorr
Display the autocorrelation diagramme of the regularized time series using the acf function with arguments : lag.max = ((nrow(TimeSerie))/2), na.action = na.pass. Can be "YES" or "NO" (the default)
显示的自相关diagramme的正规化时间序列的ACF的功能与参数:lag.max =(:(NROW(TimeSerie))/ 2),na.action = na.pass。可以是“YES”或“NO”(默认值)
参数:spectrum
Display the Fourrier spectrum of the regularized time series using the spectrum function with span arguemtns =c(3,5). Can be "YES" or "NO" (the default).
显示Fourrier频谱的正规化时间序列的谱函数与跨度arguemtns = C(3,5)。可以是“YES”或“NO”(默认值)。
参数:anomaly
Display a color box (function filled.contour) plot by year each time.step (months or weeks) minus the mean of the time.step of all years. Red colors show positive anomalies and blue colors negative anomalies. Can be "YES" or "NO" (the default).
显示的颜色框(功能filled.contour)图的每个time.step年(月或周)的平均减去的time.step的所有年份。红颜色显示正异常,蓝三色的负异常。可以是“YES”或“NO”(默认值)。
参数:zsmooth
Display a detrended plot of the time series using the stl function with arguments s.window="periodic", na.action=na.fail. Can be "YES" or "NO" (the default).
显示一个非趋势的时间序列图使用STL函数参数s.window =“定期”,na.action = na.fail的。可以是“YES”或“NO”(默认值)。
参数:local.trend
Display the interactive cusum plot of the time series (local.trend of the pastecs package) that allow to manually identify the period of change in the tendency using the function identify and perform a Kendall familly test on each idenfified period (see test section). Can be "YES" or "NO" (the default).
显示互动CUSUM图的时间序列(local.trend的pastecs包),允许手动识别的倾向变动期间使用的功能,每个idenfified期(试验段)进行肯德尔直系的测试。可以是“YES”或“NO”(默认值)。
参数:test
Perform a test to evaluate the presence and the magnitude of a temporal trend on the time series. Can be "MK" for Seasonal Mann-Kendall test (the default), "SMK" for the same test with detail for each time step, "LOESS" that fit a polynomial surface determined by one or more numerical predictors, using local fitting; a MK is perform on this fitting.
执行一个测试,以评估的时间的趋势的时间序列上的存在和大小的。可以季节性Mann-Kendall检验(默认值),“SMK”进行相同的测试与细节,每一个时间步长的“MK”,“黄土”,适合多项式曲面由一个或多个数值的预测,使用局部拟合,MK执行此配件。
值----------Value----------
Results are return as .png figures or .csv files Results are also directly readable through the panel 5 of the interface.
结果是返回,PNG数字。csv文件的结果,也可以直接通过面板上的接口读取。
Savepath can be choose using the option 'Select directory' (see the function selectdirectory more more informations)
,Savepath可以选择使用选项“选择”目录“(见功能selectdirectory更多信息)
Name of saved filed follow the nomenclature : Original.file.name_analysis.name_parameter.csv/.png
名称保存提交的术语:Original.file.name_analysis.name_parameter.csv / .png
or for multiple period analysis (see cusum for more details) : Original.file.name_analysis.name_parameter_starting.year_ending.years.csv.
或为多周期分析(见有关详细信息,CUSUM):Original.file.name_analysis.name_parameter_starting.year_ending.years.csv。
analysis.names are :
analysis.names是:
_Boxplot_ for boxplot figure (.png). _Outliers_ for the save of removed outliers (.csv). _TimeSeries_ for the plot of the regularized time series (.png). _Regularised_data_ for the table of regularized time series (.csv). _Autocor_ for the autocorelation diagram (.png). _Spectrum_ for the Fourier spectrum plot (.png) . _ColorPlot_ for the anomaly color.plot (.png). _Detrended_ for detrended plot (.png). _Local_Global Trend_ for result of Seasonal Mann Kendall apply to local trend (.csv). _Local_Seasonal Trend_ same as above with detail for each time step (.csv). _Global Trend_ for result of Seasonal Mann Kendall (.csv). _Seasonal Trend_ same as above with detail for each time step (.csv). _LOESSplot_ for loess plot (.png). _NormalNutri_ for analysis of normalized values of nutrients (.png).
_Boxplot_盒形图图(PNG)。 _Outliers_保存去掉异常值(CSV)。 _TimeSeries_正规化时间序列(PNG)的图。 _Regularised_data_的正规化时间序列表(CSV)。 _Autocor_的autocorelation图(PNG)。 _Spectrum_的傅立叶频谱图(PNG)。 _ColorPlot_的的异常color.plot(PNG)。 _Detrended_非趋势图(PNG)。 _Local_Global Trend_结果的季节曼肯德尔适用于本地的趋势(CSV)。 _Local_Seasonal Trend_细节与上面一样,每一个时间步长(CSV)。结果的_global Trend_为季节性曼·肯德尔(CSV)。 _Seasonal Trend_细节与上面一样,每一个时间步长(CSV)。 _LOESSplot_黄土图(PNG)。 _NormalNutri_的营养素(PNG)的归一化值进行分析。
See values output of corresponding functions.
参考数据输出的值的相应的功能。
(作者)----------Author(s)----------
David Devreker
参见----------See Also----------
boxplot impute shapiro.test summary acf spectrum filled.contour stl local.trend mannKen seasonTrend seaKen loess
boxplotimputeshapiro.testsummaryacfspectrumfilled.contourstllocal.trendmannKen seasonTrendseaKenloess
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|