找回密码
 注册
查看: 569|回复: 0

R语言 TSPC包 tspc.predict()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 12:46:04 | 显示全部楼层 |阅读模式
tspc.predict(TSPC)
tspc.predict()所属R语言包:TSPC

                                         Form principal components predictor from a trained tspc object
                                         形成主要组成部分的预测从一个训练有素的TSPC对象

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Computes supervised principal components, using scores from "object"
计算监管的主要组成部分,使用分数“对象”


用法----------Usage----------


tspc.predict(object, data, newdata, threshold, n.components = 3, prediction.type = c("continuous", "discrete", "nonzero"), n.class = 2)



参数----------Arguments----------

参数:object
Object fit.obj returned by tspc.train
对象fit.obj返回的tspc.train


参数:data
List of projection of training data returned by tspc.train, object proj.obj$wdata.train
列表的培训返回的数据由tspc.train投影,对象proj.obj wdata.train


参数:newdata
List of projection of test data returned by tspc.train, object proj.obj$wdata.test
投影测试数据返回tspc.train的列表,对象proj.obj wdata.test


参数:threshold
Threshold for scores.
阈值的分数。


参数:n.components
Number of principal components to compute. Should be 1,2 or 3.
主成分的数量来计算。应该是1,2或3。


参数:prediction.type
"continuous" for raw principal component(s); "discrete" for principal component categorized in equal bins; "nonzero" for indices of features that pass the threshold  
“连续”为原料的主要成分(S)“离散”为主要成分分类平等箱“非零”的功能,通过阈值的指数


参数:n.class
Number of classes into which predictor is binned (for prediction.type="discrete"
的预测进行分级类(prediction.type =“离散”


值----------Value----------

list(v.pred = out, u = x.sml.svd$u, d = x.sml.svd$d,  which.features = which.features, v.pred.1df = v.pred.1df,  n.components = n.pc, coef = result$coef, call = this.call,  prediction.type = prediction.type) <table summary="R valueblock"> <tr valign="top"><td>v.pred </td> <td> Supervised principal componients predictor</td></tr> <tr valign="top"><td>u </td> <td> U matrix from svd of weighted feature matrix</td></tr> <tr valign="top"><td>d </td> <td> singual values  from svd of weighted feature matrix</td></tr> <tr valign="top"><td>which.features</td> <td> Indices of features exceeding threshold</td></tr> <tr valign="top"><td>n.components</td> <td> Number of supervised  principal components requested</td></tr> </table>
列表(v.pred = OUT,U = D = x.sml.svd $ D,$ U,x.sml.svd which.features = which.features,v.pred.1df = v.pred.1df,N。部件= n.pc系数=结果系数,呼叫this.call,prediction.type = prediction.type)<table summary="R valueblock"> <tr valign="top"> <TD>v.pred  </ TD> <TD>的监督主要componients预测</ TD> </ TR> <tr valign="top"> <TD>u  </ TD> <TD>ü矩阵奇异值分解的特征加权矩阵</ TD> </ TR> <tr valign="top"> <TD> d </ TD> <TD> singual的值奇异值分解的特征加权矩阵</ TD> </ TR> <TR VALIGN =“”> <TD> which.features </ TD> <TD>功能指标超过阈值</ TD> </ TR> <tr valign="top"> <TD>n.components <TD>号码的监督要求的主要组成部分</ TD> </ TD> </ TR> </ TABLE>


(作者)----------Author(s)----------



Yuping Zhang




实例----------Examples----------


x = list()
for(i in 1:2){
        set.seed(i+123)
        x[[i]] = matrix(rnorm(500*100), ncol=100)
}
y = sample(c(5:100), size=100, replace=TRUE)
censoring = sample(c(0,1), size=100, replace=TRUE)

data = list(x = x, y=y, censoring.status=censoring, genenames = as.character(paste("gene", c(1:500), sep="")), geneid =         as.character(paste("gene", c(1:500), sep="")))

x = list()
for(i in 1:2){
        set.seed(i+133)
        x[[i]] = matrix(rnorm(500*100), ncol=100)
}
y = sample(c(5:100), size=100, replace=TRUE)
censoring = sample(c(0,1), size=100, replace=TRUE)

data.test = list(x = x, y=y, censoring.status=censoring, genenames = as.character(paste("gene", c(1:500), sep="")), geneid = as.character(paste("gene", c(1:500), sep="")))

fit = tspc.train(data, data.test, type="survival")

predict.obj<- tspc.predict(fit$fit.obj, fit$proj.obj$data.train, fit$proj.obj$data.test, threshold=1.0, n.components=1)



转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-29 01:34 , Processed in 0.020174 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表