arma(tseries)
arma()所属R语言包:tseries
Fit ARMA Models to Time Series
适合ARMA模型时间序列
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fit an ARMA model to a univariate time series by conditional least squares. For exact maximum likelihood estimation see arima0.
单变量时间序列的条件最小二乘拟合ARMA模型。精确极大似然估计arima0。
用法----------Usage----------
arma(x, order = c(1, 1), lag = NULL, coef = NULL,
include.intercept = TRUE, series = NULL, qr.tol = 1e-07, ...)
参数----------Arguments----------
参数:x
a numeric vector or time series.
一个数值向量或时间系列。
参数:order
a two dimensional integer vector giving the orders of the model to fit. order[1] corresponds to the AR part and order[2] to the MA part.
发出订单的模式,以适应一个二维整数向量。 order[1]对应的AR部分和order[2]MA的一部分。
参数:lag
a list with components ar and ma. Each component is an integer vector, specifying the AR and MA lags that are included in the model. If both, order and lag, are given, only the specification from lag is used.
一个列表组件ar和ma。每个组件是一个整数的矢量,指定包含在模型中的AR和MA滞后。如果这两个,order和lag“,只有规范lag使用。
参数:coef
If given this numeric vector is used as the initial estimate of the ARMA coefficients. The preliminary estimator suggested in Hannan and Rissanen (1982) is used for the default initialization.
如果这个数字矢量作为初步估计ARMA系数。汉南区和Rissanen(1982)中建议的初步估计用于默认的初始化。
参数:include.intercept
Should the model contain an intercept?
如果模型包含截距?
参数:series
name for the series. Defaults to deparse(substitute(x)).
名称为系列。默认为deparse(substitute(x))的。
参数:qr.tol
the tol argument for qr when computing the asymptotic standard errors of coef.
tol参数时计算的的渐近标准的错误qrcoef。
参数:...
additional arguments for optim when fitting the model.
为optim拟合模型时的附加参数。
Details
详细信息----------Details----------
The following parametrization is used for the ARMA(p,q) model:
使用下面的参数化的ARMA(p,q)模型:
where a[0] is set to zero if no intercept is included. By using the argument lag, it is possible to fit a parsimonious submodel by setting arbitrary a[i] and b[i] to zero.
其中a[0]被设置为零,如果没有包括在内截距。通过使用参数lag的,这是可能的,以适应一个吝啬的子模型,通过设置任意a[i]和b[i]零。
arma uses optim to minimize the conditional sum-of-squared errors. The gradient is computed, if it is needed, by a finite-difference approximation. Default initialization is done by fitting a pure high-order AR model (see ar.ols). The estimated residuals are then used for computing a least squares estimator of the full ARMA model. See Hannan and Rissanen (1982) for details.
arma使用optim条件的总和的平方误差最小化的。梯度计算,如果它是必要的,通过有限差分近似。缺省的初始化是通过安装一个纯粹的高阶AR模型(见ar.ols“)。估计残差,然后用于计算一个完整的ARMA模型最小二乘估计的。汉南Rissanen(1982)。
值----------Value----------
A list of class "arma" with the following elements:
类"arma"包含下列元素的列表:
参数:lag
the lag specification of the fitted model.
滞后规范的拟合模型。
参数:coef
estimated ARMA coefficients for the fitted model.
估计ARMA系数拟合模型。
参数:css
the conditional sum-of-squared errors.
条件的总和的平方误差。
参数:n.used
the number of observations of x.
的数量观察x。
参数:residuals
the series of residuals.
残差的系列。
参数:fitted.values
the fitted series.
装系列。
参数:series
the name of the series x.
名称的一系列x。
参数:frequency
the frequency of the series x.
频率的一系列x。
参数:call
the call of the arma function.
的呼唤arma功能。
参数:vcov
estimate of the asymptotic-theory covariance matrix for the coefficient estimates.
估计系数估计值的渐近理论协方差矩阵。
参数:convergence
The convergence integer code from optim.
convergence整数代码optim。
参数:include.intercept
Does the model contain an intercept?
这个模型包含截距?
(作者)----------Author(s)----------
A. Trapletti
参考文献----------References----------
Recursive Estimation of Mixed Autoregressive-Moving Average Order. Biometrika 69, 81–94.
参见----------See Also----------
summary.arma for summarizing ARMA model fits; arma-methods for further methods; arima0, ar.
summary.arma总结ARMA模型的适合,“arma-methods进一步的方法,”arima0,ar。
实例----------Examples----------
data(tcm)
r <- diff(tcm10y)
summary(r.arma <- arma(r, order = c(1, 0)))
summary(r.arma <- arma(r, order = c(2, 0)))
summary(r.arma <- arma(r, order = c(0, 1)))
summary(r.arma <- arma(r, order = c(0, 2)))
summary(r.arma <- arma(r, order = c(1, 1)))
plot(r.arma)
data(nino)
s <- nino3.4
summary(s.arma <- arma(s, order=c(20,0)))
summary(s.arma
<- arma(s, lag=list(ar=c(1,3,7,10,12,13,16,17,19),ma=NULL)))
acf(residuals(s.arma), na.action=na.remove)
pacf(residuals(s.arma), na.action=na.remove)
summary(s.arma
<- arma(s, lag=list(ar=c(1,3,7,10,12,13,16,17,19),ma=12)))
summary(s.arma
<- arma(s, lag=list(ar=c(1,3,7,10,12,13,16,17),ma=12)))
plot(s.arma)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|