nlar methods(tsDyn)
nlar methods()所属R语言包:tsDyn
nlar methods
NLAR方法
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Generic "nlar" methods
通用的NLAR“的方法
用法----------Usage----------
## S3 method for class 'nlar'
AIC(object, k=2,...)
## S3 method for class 'nlar'
coef(object, ...)
## S3 method for class 'nlar'
fitted(object, ...)
## S3 method for class 'nlar'
MAPE(object, ...)
## S3 method for class 'nlar'
mse(object, ...)
## S3 method for class 'nlar'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'nlar'
residuals(object, ...)
## S3 method for class 'nlar'
summary(object, ...)
## S3 method for class 'nlar'
plot(x, ask=interactive(), ...)
## S3 method for class 'nlar'
predict(object, newdata, n.ahead, simulate=FALSE, ...)
## S3 method for class 'nlar'
toLatex(object, ...)
参数----------Arguments----------
参数:x, object
fitted "nlar" object
装“NLAR对象
参数:newdata
data to which to apply the prediction
数据要对其应用预测
参数:n.ahead
number of steps ahead at which to predict
今后的步骤预测数
参数:simulate
if TRUE, new observations are simulated from underlying Data Generating Process
如果TRUE,新的观测结果是从基础数据生成过程模拟
参数:ask
graphical option. See par
图形选项。见par
参数:digits
See printCoefmat
见printCoefmat
参数:k
numeric, the penalty per parameter to be used; the default k = 2 is the classical AIC
数字的,处以使用每个参数的默认K = 2是经典的AIC
参数:...
further arguments to be passed to and from other methods
进一步的参数被传递到其他方法
Details
详细信息----------Details----------
MAPE Mean Absolute Percent Error
梅普平均绝对百分比误差
mse Mean Square Error
MSE均方误差
plot Diagnostic plots
绘制诊断图
predict Model predictions. For <VAR>n.ahead</VAR>>1, the model is simply iterated on generated data
预测模型的预测。对于<VAR> n.ahead </ VAR >> 1,简单地重复生成的数据模型
(作者)----------Author(s)----------
Antonio, Fabio Di Narzo
参见----------See Also----------
availableModels for listing all currently available models.
availableModels列出了所有当前可用的模型。
实例----------Examples----------
x <- log10(lynx)
mod.setar <- setar(x, m=2, thDelay=1, th=3.25)
mod.setar
AIC(mod.setar)
mse(mod.setar)
MAPE(mod.setar)
coef(mod.setar)
summary(mod.setar)
e <- residuals(mod.setar)
e <- e[!is.na(e)]
plot(e)
acf(e)
plot(x)
lines(fitted(mod.setar), lty=2)
legend(x=1910, y=3.9,lty=c(1,2), legend=c("observed","fitted"))
plot(mod.setar)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|