groupCorr(CAMERA)
groupCorr()所属R语言包:CAMERA
EIC correlation grouping of LC/ESI-MS data
三电相关的LC / ESI-MS的数据分组
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Peak grouping after correlation information into pseudospectrum groups for an xsAnnotate object. Return an xsAnnotate object with grouping information.
山顶分组后伪谱组到为xsAnnotate对象的相关信息。返回一个分组信息xsAnnotate对象。
用法----------Usage----------
groupCorr(object,cor_eic_th=0.75, pval=0.05, graphMethod="hcs",
calcIso = FALSE, calcCiS = TRUE, calcCaS = FALSE, psg_list=NULL, xraw=NULL, ...)
参数----------Arguments----------
参数:object
The xsAnnotate object
xsAnnotate对象
参数:cor_eic_th
Correlation threshold for EIC correlation
三电相关的相关阈值
参数:pval
p-value threshold for testing correlation of significance
p值阈值测试具有重要意义的相关性
参数:graphMethod
Clustering method for resulting correlation graph. See calcPC for more details.
聚类方法产生的关联图。 calcPC看到更多细节。
参数:calcIso
Include isotope detection informationen for graph clustering
包括同位素检测图聚类informationen
参数:calcCiS
Calculate correlation inside samples
计算样本内的相关
参数:calcCaS
Calculate correlation accross samples
计算相关accross样本
参数:psg_list
Vector of pseudospectra indices. The correlation analysis will be only done for those groups
向量的伪谱指数。相关分析将只为这些群体
参数:xraw
Optional xcmsRaw object, which should be used for raw data extraction
可选xcmsRaw对象,应使用原始数据提取
参数:...
Additional parameter
额外的参数
Details
详情----------Details----------
The algorithm calculates different informations for group peaks into so called pseudospectra. This pseudospectra contains peaks, with have a high correlation between each other. So far three different kind of information are available. Correlation of intensities across samples (need more than 3 samples), EIC correlation between peaks inside a sample and additional the informationen about recognized isotope cluster can be included. After calculation of all these informations, they are combined as edge value into a graph object. A following graph clustering algorithm separate the peaks (nodes in the graph) into the pseudospectra.
该算法计算成所谓的不同伪谱组峰的信息。包含此伪谱峰,有一个相互之间的高相关。到目前为止,三个不同种类的信息可用。各样品的强度(需要超过3个样本)的相关性,可以包含内样品的峰之间的和额外的关于确认同位素聚类informationen三电相关。所有这些信息计算后,他们结合成一个图形对象的边缘价值。一个如下图的聚类算法分割成伪谱峰(图中的节点)。
作者(S)----------Author(s)----------
Carsten Kuhl <ckuhl@ipb-halle.de>
参见----------See Also----------
calcCiS calcCaS calcPC xsAnnotate-class
calcCiScalcCaScalcPCxsAnnotate-class
举例----------Examples----------
library(CAMERA)
file <- system.file('mzdata/MM14.mzdata', package = "CAMERA");
xs <- xcmsSet(file, method="centWave", ppm=30, peakwidth=c(5, 10));
an <- xsAnnotate(xs);
an.group <- groupFWHM(an);
an.iso <- findIsotopes(an.group); #optional step for using isotope information[使用同位素信息的可选步骤]
an.grp.corr <- groupCorr(an.iso, calcIso=TRUE);
#For csv output[对于CSV输出]
# write.csv(file="peaklist_with_isotopes.csv",getPeaklist(an))[write.csv(文件=的“peaklist_with_isotopes.csv”,getPeaklist())]
#Multiple sample [多个样品]
library(faahKO)
xs.grp <- group(faahko)
#With selected sample[随着抽选的样本]
xsa <- xsAnnotate(xs.grp, sample=1)
xsa.group <- groupFWHM(xsa)
xsa.iso <- findIsotopes(xsa.group) #optional step[可选步骤]
xsa.grp.corr <- groupCorr(xsa.iso, calcIso=TRUE)
#With automatic selection[具有自动选择]
xsa.auto <- xsAnnotate(xs.grp)
xsa.grp <- groupFWHM(xsa.auto)
xsa.iso <- findIsotopes(xsa.grp) #optional step[可选步骤]
index <- c(1,4) #Only group one and four will be calculate[只有一和四组将计算]
#We use also correlation across sample[我们还使用跨样本相关]
xsa.grp.corr <- groupCorr(xsa.iso, psg_list=index, calcIso=TRUE, calcCaS=TRUE)
#Note: Group 1 and 4 have no subgroups[注:第1组和4有没有群]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|