gene.pvalue(BUS)
gene.pvalue()所属R语言包:BUS
Calculates p-value for gene-gene interaction
基因 - 基因相互作用的计算p值
译者:生物统计家园网 机器人LoveR
描述----------Description----------
To calculate p-value for the null hypothesis that there is no gene-gene interaction. For gene expression data with M genes, a p-value matrix under MxM single null hypotheses (each two genes have no interaction) is computed; besides, matrices with correct p-values are output: corrected permutation method using a distribution of MxMxP (P number of permutations) null hypotheses tests (multi.perm.p.value). p-values are calculated based on the adjacency matrix for gene-gene interaction computed by function gene.similarity.
计算p值的零假设,有没有基因 - 基因相互作用。 M基因的基因表达数据,根据MXM单虚无假设(每两个基因有没有互动)的P-值矩阵计算;此外,用正确的p值矩阵输出:纠正置换方法使用的MxMxP分布(P数排列)零假设测试(multi.perm.p.value)。 P-值计算为由功能gene.similarity计算的基因 - 基因相互作用的邻接矩阵的基础上。
用法----------Usage----------
gene.pvalue(EXP, measure, net.trim, n.replica = 400)
参数----------Arguments----------
参数:EXP
Gene expression data in form of a matrix. Row stands for genes and column for experiments.
基因表达数据矩阵形式。行代表基因和实验列。
参数:measure
Metric used to calculate similarity between genes: "corr" for correlation, "MI" for mutual information.
度量用于计算互信息的基因之间的相似:“更正”的相关性,“智”。
参数:net.trim
Method used to trim the network: "mrnet", "clr", "aracne" and "none" . "mrnet" infers a network using the maximum relevance/minimum redundancy feature selection method; "clr" use the CLR algorithm; "aracne" applies the data processing inequality to all triplets of nodes in order to remove the least significant edge in each triplet. These options come from the package minet, and they are used only for mutual information. "none" indicates no trim operation. It should be chosen when correlation is considered.
的方法来削减网络:“mrnet”,“CLR”,“aracne”和“无”。推断“mrnet”网络使用的最大相关性/最小冗余特征选择方法;“CLR”使用CLR算法;的“aracne”适用于数据处理节点的所有三胞胎的不平等,以消除最显着优势每个三胞胎。这些选项来自包MINET,它们仅用于互信息。 “无”表示没有修剪操作。它被认为是相关时,应选择。
参数:n.replica
Number of permutations used for the correction of multiple hypothesis testing; default value is 400.
用于多种假设检验校正的排列数量,默认值是400。
Details
详情----------Details----------
Normally, in a permutation method, we use the empirical distribution of some statistics to estimate the p-value. To get a simple p-value for no interaction between gene i and j, empirical distribution of a vector with length of P (number of replicates) is used; to correct for multiple hypothesis with permutations, an empirical distribution of a vector with length of PxM (M being the number of hypotheses tested) is used.
通常情况下,在置换的方法,我们使用的一些统计数据的经验分布估计的p值。没有基因i和j,向量的经验分布与P的长度(重复次数)之间的相互作用得到一个简单的p值是用来纠正排列,向量长度的经验分布的多个假说PXM(M是测试的假设数)。
值----------Value----------
参数:single.perm.p.value
A matrix of single p-values obtained with permutation method + beta distribution for extreme values (for MI) or obtained with the exact distribution computed directly by cor.test (for correlation)
矩阵排列法+β(MI)的极端值分布或获得直接由cor.test计算的确切分布所得的单一P-值(相关)
参数:multi.perm.p.value
A matrix of corrected p-values obtained with permutation method
得到纠正的p值矩阵排列方法
作者(S)----------Author(s)----------
Yin Jin, Hesen Peng, Lei Wang, Raffaele Fronza, Yuanhua Liu and Christine Nardini
参见----------See Also----------
gene.similarity
gene.similarity
举例----------Examples----------
data(copasi)
mat=as.matrix(copasi)[1:10,]
rownames(mat)<-paste("G",1:nrow(mat), sep="")
gene.pvalue(mat,measure="MI",net.trim="mrnet")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|