找回密码
 注册
查看: 2119|回复: 0

R语言 survival包 clogit()函数中文帮助文档(中英文对照)

  [复制链接]
发表于 2012-9-30 20:44:30 | 显示全部楼层 |阅读模式
clogit(survival)
clogit()所属R语言包:survival

                                        Conditional logistic regression
                                         条件Logistic回归分析

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Estimates a logistic regression model by maximising the conditional likelihood. Uses a model formula of the form case.status~exposure+strata(matched.set). The default is to use the exact conditional likelihood, a commonly used approximate conditional likelihood is provided for compatibility with older software.
logistic回归模型估计的条件的可能性最大化。使用模型公式的形式case.status~exposure+strata(matched.set)。默认情况下使用的确切条件的可能性,一种常用的近似条件的可能性是与旧版本软件的兼容性。


用法----------Usage----------


clogit(formula, data, weights, subset, na.action,
method=c("exact", "approximate", "efron", "breslow"),
...)



参数----------Arguments----------

参数:formula
Model formula
模型公式


参数:data
data frame  
数据框


参数:weights
optional, names the variable containing case weights
可选的,命名变量的收纳箱重量


参数:subset
optional, subset the data
可选的子集的数据


参数:na.action
optional na.action argument.  By default the global option na.action is used.
可选na.action的说法。默认情况下,全局选项“na.action使用。


参数:method
use the correct (exact) calculation in the conditional likelihood or one of the approximations
使用正确的在有条件的似然率计算(精确的)或1的近似值


参数:...
optional arguments, which will be passed to coxph.control
可选的参数,这些参数将被传递给coxph.control


Details

详细信息----------Details----------

A stratified Cox model with time=constant, status of 1=case 0=control, and using the exact partial likelihood has the same likelihood formula as a conditional logistic regression.  The clogit routine creates the necessary dummy variable of times (all 1) and then calls coxph.
随着时间的推移一个分层的Cox比例风险模型=常数,状态= 1的情况下,0 =控制,并采用精确的局部似然作为条件Logistic回归公式具有相同的可能性。的clogit程序创建所需的虚拟变量倍(所有1),,然后调用coxph。

The computation of the exact partial likelihood can be very slow, however.  If a particular strata had say 10 events out of 20 subjects we have to add up a denominator that involves all possible ways of choosing 10 out of 20, which is 20!/(10! 10!) = 184756 terms. Gail et al describe a fast recursion method, which largely ameleorates  this;  it was incorporated into version 2.36-11 of the survival package. (Most of the time conditional logistic modeling  is applied data with 1 case + k controls per set, however,  which involves choosing 1 out of k and the computational issue above does not arise.) The 'appoximate' option maps to the Breslow approximation for historical reasons.
计算精确的局部似然可以是非常缓慢的,但是。如果一个特定的阶层已经说了10个项目的20个科目,我们添加了一个分母,涉及所有可能的方式选择10 20,20 /(10 10)= 184756条款。盖尔等人描述了一种快速递归的方法,这在很大程度上ameleorates此,它被纳入的生存包的版本2.36-11。 (大部分的时间条件Logistic模型应用的数据有1例+ K控制每套,但是,这涉及到选择1 k和上面的计算问题不会出现。)appoximate的“选项映射到布瑞斯罗夫近似由于历史的原因。

It is not clear how case weights should be handled.  For instance if there are two deaths in a strata, one with weight=1 and one with weight=2, should the likelihood calculation consider all subsets of size 2 or all subsets of size 3? Consequently, case weights are ignored by the routine.
目前尚不清楚的情况下,权重应该如何处理。例如,如果有两人死亡,一个阶层,一个带权重= 1,一个体重= 2,计算的可能性应该考虑大小为2或所有子集的所有子集的大小为3?因此,情况权重将被忽略的常规。


值----------Value----------

An object of class "clogit", which is a wrapper for a "coxph" object.
类的一个对象"clogit",这是一个包装的"coxph"对象。


参考文献----------References----------

calculations for matched case-control studies and survival studies with tied death times.  Biometrika 68:703-707, 1980.

(作者)----------Author(s)----------

Thomas Lumley



参见----------See Also----------

strata,coxph,glm
strata,coxph,glm


实例----------Examples----------


## Not run: clogit(case ~ spontaneous + induced + strata(stratum), data=infert)[#未运行:clogit(的情况下自发+引起的地层(层),数据infert)]

# A multinomial response recoded to use clogit[多项式响应重新编码,使用clogit]
#  The revised data set has one copy per possible outcome level, with new[修订后的数据集有一个副本每个可能的结果水平,与新]
#  variable tocc = target occupation for this copy, and case = whether[变量TOCC这个副本的目标职业和案例=是否]
#  that is the actual outcome for each subject.[这是每个科目的实际结果。]
# See the catspec package for more details.[有关详细信息,请参阅catspec包。]
resp <- levels(logan$occupation)
n <- nrow(logan)
indx <- rep(1:n, length(resp))
logan2 <- data.frame(logan[indx,],
                     id = indx,
                     tocc = factor(rep(resp, each=n)))
logan2$case <- (logan2$occupation == logan2$tocc)
clogit(case ~ tocc + tocc:education + strata(id), logan2)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-23 20:06 , Processed in 0.021501 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表