找回密码
 注册
查看: 452|回复: 0

R语言 SpherWave包 swthresh()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 15:14:12 | 显示全部楼层 |阅读模式
swthresh(SpherWave)
swthresh()所属R语言包:SpherWave

                                        Thresholding of Spherical Wavelet Decomposition (‘swd’) Object
                                         阈值的的球面小波分解(社署)对象

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function performs various ways to threshold a "swd" class object.
这个函数执行阈值“社署”类对象的各种方法。


用法----------Usage----------


swthresh(swd, policy, by.level, type, nthresh, value = 0.1,
Q = 0.05)



参数----------Arguments----------

参数:swd
an object of class "swd"
对象类“社署”


参数:policy
threshold technique. At present the possible policies are ""universal"", ""probability"", ""fdr"", ""Lorentz"" and ""sure"".
阈值技术。目前的政策是“通用”的“,”概率“,”FDR“,”洛伦兹“和”确定“。


参数:by.level
If FALSE, then perform a global threshold. If TRUE, a thresholding value is computed and applied separately to each resolution level.
如果为FALSE,则执行一个全球性的阈值。如果为true,阈值值计算,并分别应用到每个分辨率级别。


参数:type
the type of thresholding. This can be ""hard"", ""soft"" or ""Lorentz"".
的阈值的类型。这可以是“硬”“,”软“或”“洛伦兹”。


参数:nthresh
the number of resolution levels to be thresholded in the decomposition
要在分解阈值的数目的分辨率水平


参数:value
the user supplied threshold represented by quantile level for ""probability"" policy
用户提供的位数水平为代表的“概率阈值”政策


参数:Q
parameter for the false discovery rate of ""fdr"" policy
“FDR”政策的错误发现率的参数


Details

详细信息----------Details----------

This function thresholds or shrinks details stored in a "swd" object and returns the thresholded details in a modified "swd" object. For level-dependent thresholding, ""universal"", ""Lorentz"" and ""fdr"" are provided. Only hard type thresholding is proper for ""probability"" thresholding. Also note that only soft type thresholding is proper for ""sure"" thresholding.
此功能的阈值或缩小细节中“社署的对象,存储和返回阈值的详细信息在修改后的”社署“对象。水平依赖阈值,“通用”“,”“洛伦兹”和“FDR”“。只有硬型阈值是正确的“”概率“阈值”。另外请注意,只有软式“确保”阈值阈值是正确的。


值----------Value----------

An object of class "swd". This object is a list with the following components.  <table summary="R valueblock"> <tr valign="top"><td>obs</td> <td> observations</td></tr> <tr valign="top"><td>latlon</td> <td> grid points of observation sites in degree</td></tr> <tr valign="top"><td>netlab</td> <td> vector of labels representing sub-networks</td></tr>  <tr valign="top"><td>eta</td> <td> bandwidth parameters for Poisson kernel</td></tr>  <tr valign="top"><td>method</td> <td> extrapolation methods, ""ls"" or ""pls""</td></tr>  <tr valign="top"><td>approx</td> <td> if TRUE, approximation is used.</td></tr> <tr valign="top"><td>grid.size</td> <td> grid size (latitude, longitude) of extrapolation site</td></tr>  <tr valign="top"><td>lambda</td> <td> smoothing parameter for penalized least squares method</td></tr>  <tr valign="top"><td>p0</td> <td> starting level for extrapolation. Resolution levels p0+1, \ldots, L is used for extrapolation.</td></tr>  <tr valign="top"><td>gridlon</td> <td> longitudes of extrapolation sites in degree</td></tr> <tr valign="top"><td>gridlat</td> <td> latitudes of extrapolation sites in degree</td></tr> <tr valign="top"><td>nlevels</td> <td> the number of multi-resolution levels</td></tr>  <tr valign="top"><td>coeff</td> <td> interpolation coefficients</td></tr> <tr valign="top"><td>field</td> <td> extrapolation on grid.size</td></tr> <tr valign="top"><td>density1</td> <td> density of SBF</td></tr> <tr valign="top"><td>latlim</td> <td> range of latitudes in degree</td></tr> <tr valign="top"><td>lonlim</td> <td> range of longitudes in degree</td></tr> <tr valign="top"><td>global</td> <td> List of successively smoothed data</td></tr> <tr valign="top"><td>density</td> <td> density of SW coefficients</td></tr> <tr valign="top"><td>detail</td> <td> List of details at different resolution levels</td></tr> <tr valign="top"><td>swcoeff</td> <td> spherical wavelet coefficients</td></tr> <tr valign="top"><td>thresh.info</td> <td> thresholding information and ranges of local components before thresholding</td></tr> </table>
的对象类社署。此对象是一个具有下列组件列表。 <table summary="R valueblock"> <tr valign="top"> <TD> obs</ TD> <TD>的意见</ TD> </ TR> <tr valign="top"> < latlon TD> </ TD> <TD>网格点的观测点度</ TD> </ TR> <tr valign="top"> <TD> netlab</ TD> < TD>矢量表示子网络的标签</ TD> </ TR> <tr valign="top"> <TD>eta </ TD> <TD>带宽参数Poisson核</ TD> < / TR> <tr valign="top"> <TD> method</ TD> <TD>外推法“,”LS“或”PLS“</ TD> </ TR> <tr valign="top"> <TD> approx </ TD> <TD>如果为TRUE,使用近似。</ TD> </ TR> <tr valign="top"> <TD >grid.size</ TD> <TD>网格尺寸(纬度,经度)外推网站</ TD> </ TR> <tr valign="top"> <TD>lambda</ TD > <TD>平滑参数补偿最小二乘法</ TD> </ TR> <tr valign="top"> <TD> p0 </ TD> <TD>开始外推。分辨率级别p0+1, \ldots, L使用外推。</ TD> </ TR> <tr valign="top"> <TD>gridlon </ TD> <TD>东经度的外推网站< / TD> </ TR> <tr valign="top"> <TD> gridlat </ TD> <TD>纬度程度的外推网站</ TD> </ TR> <TR VALIGN =“顶部“> <TD> nlevels </ TD> <TD>数多分辨率水平</ TD> </ TR> <tr valign="top"> <TD>coeff</ TD> <TD>插值系数</ TD> </ TR> <tr valign="top"> <TD> field </ TD> <TD>外推法grid.size </ TD> </ TR > <tr valign="top"> <TD> density1 </ TD> <TD>密度SBF </ TD> </ TR> <tr valign="top"> <TD>latlim </ TD> <TD>范围的纬度度</ TD> </ TR> <tr valign="top"> <TD>lonlim </ TD> <TD>范围内的经度度< / TD> </ TR> <tr valign="top"> <TD> global </ TD> <TD>连续平滑的数据列表</ TD> </ TR> <TR VALIGN =“顶” > <TD> density </ TD> <TD>密度的SW系数</ TD> </ TR> <tr valign="top"> <TD> detail</ TD> <TD >列表的细节在不同的分辨率级别</ TD> </ TR> <tr valign="top"> <TD> swcoeff </ TD> <TD>球面小波系数</ TD> </ TR> <tr valign="top"> <TD> thresh.info </ TD> <TD>阈值信息和本地组件之前阈值范围</ TD> </ TR> </ TABLE>


参考文献----------References----------

Oh, H-S. and Li, T-H. (2004) Estimation of global temperature fields from scattered observations by  a spherical-wavelet-based spatially adaptive method. Journal of the Royal Statistical Society Ser. B, 66, 221&ndash;238.

参见----------See Also----------

sbf, swd, swr.
sbf,swd,swr。


实例----------Examples----------


### Observations of year 1967[##1967年的观察]
#data(temperature)[数据(温度)]
#names(temperature)[名称(温度)]

# Temperatures on 939 weather stations of year 1967    [1967年的939个气象站的温度]
#temp67 &lt;- temperature$obs[temperature$year == 1967] [temp67 < - 温度美元OBS [温度年== 1967]]
# Locations of 939 weather stations    [939个气象站的位置]
#latlon &lt;- temperature$latlon[temperature$year == 1967, ][latlon < - 的温度美元latlon [温度年== 1967年]]

### Network design by BUD[##网络设计BUD]
#data(netlab)[数据(NETLAB)]

### Bandwidth for Poisson kernel[##泊松核的带宽]
#eta &lt;- c(0.961, 0.923, 0.852, 0.723, 0.506)[ETA  -  C(0.961,0.923,0.852,0.723,0.506)]

### SBF representation of the observations by pls[##的SBF表示,观察PLS]
#out.pls &lt;- sbf(obs=temp67, latlon=latlon, netlab=netlab, eta=eta, [SBF(OBS = temp67,latlon latlon,NETLAB = NETLAB,η= ETA,out.pls < - ]
#    method="pls", grid.size=c(50, 100), lambda=0.89)[方法=“PLS”,grid.size = C(50,100),λ= 0.89)]

### Decomposition[##分解]
#out.dpls &lt;- swd(out.pls)[out.dpls < - 社署(out.pls)]

### Thresholding[##阈值]
#out.univ &lt;- swthresh(out.dpls, policy="universal", by.level=TRUE, [out.univ < -  swthresh(out.dpls,政策=“通用”,by.level = TRUE,]
#    type="hard", nthresh=4) [=“硬”,nthresh = 4)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-18 22:21 , Processed in 0.029265 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表