network.design(SpherWave)
network.design()所属R语言包:SpherWave
Network Design
网络设计
译者:生物统计家园网 机器人LoveR
描述----------Description----------
produces multi-resolution network.
产生多分辨率的网络。
用法----------Usage----------
network.design(latlon, method = "Oh", type = "reduce", nlevel, x)
参数----------Arguments----------
参数:latlon
grid points of observation sites in degree
度的观测点的网格点
参数:method
network design method, "cover", "ModifyGottlemann", "Gottlemann" or "Oh"
网络设计方法,“盖”,“ModifyGottlemann”,“Gottlemann”或“哦”。
参数:type
specifies grid type, "regular" or "reduced"
指定网格类型,“经常”或“减少”
参数:nlevel
the number of observations in each resolution when using the method ""cover""
每项决议案时使用的方法“盖”的若干意见“
参数:x
radius in degree
半径度
Details
详细信息----------Details----------
This function partitions the grid points of observations into networks. Each network corresponds resolution level and level 1 is the most detailed level. Possible methods are
此功能分区网格点上观测到网络。每个网络对应分辨率级别,1级是最详细的。可能的方法是:
""cover"" for utilizing ""cover.design"" in the package ""field""
“覆盖”为利用“cover.design”的“包”领域“
""ModifyGottlemann"" for modified G\"ottlemann's method
“ModifyGottlemann”修饰的G \“ottlemann的方法
""Gottlemann"" for G\"ottlemann's method
“Gottlemann”“为G \的”ottlemann的方法
""Oh"" for Oh's method.
“”哦“”为哦的方法。
For ""ModifyGottlemann"", ""Gottlemann"" and ""Oh"", two types of design, ""regular"" and ""reduced"" are provided.
对于“”ModifyGottlemann“,”Gottlemann“和”噢“,两种类型的设计,”常规“和”减少“中所提供的。
值----------Value----------
<table summary="R valueblock"> <tr valign="top"><td>netlab</td> <td> vector of network labels indicating level of multi-resolution.</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> netlab</ TD>网络标签多分辨率的水平<TD>向量。</ TD> </ TR > </ TABLE>
参考文献----------References----------
Oh, H-S. (1999) Spherical wavelets and their statistical analysis with applications to meteorological data. Ph.D. Thesis, Department of Statistics, Texas A\&M University, College Station.
实例----------Examples----------
### Observations of year 1967[##1967年的观察]
#data(temperature)[数据(温度)]
#names(temperature)[名称(温度)]
# Locations of 939 weather stations [939个气象站的位置]
#latlon <- temperature$latlon[temperature$year == 1967, ][latlon < - 的温度美元latlon [温度年== 1967年]]
#netlab <- network.design(latlon=latlon, method="cover",[网络实验室会员< - network.design(latlon latlon,方法=“盖”,]
# nlevel=c(507, 244, 117, 49, 22))[nlevel = C(507,244,117,49,22))]
#netlab <- network.design(latlon=latlon, method="ModifyGottlemann", [网络实验室会员< - network.design(latlon latlon,方法=“ModifyGottlemann”]
# type="regular", x=3)[类型=“常规”,X = 3)]
#netlab <- network.design(latlon=latlon, method="Gottlemann", [网络实验室会员< - network.design(latlon latlon,方法=“Gottlemann”]
# type="regular", x=2)[类型=“常规”,X = 2)]
#netlab <- network.design(latlon=latlon, method="Oh", [NETLAB会员< - network.design(latlon latlon,方法=“哦”,]
# type="reduce", x=5)[=“减少”,X = 5)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|