sharpen(spatstat)
sharpen()所属R语言包:spatstat
Data Sharpening of Point Pattern
数据锐化点格局
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Performs Choi-Hall data sharpening of a spatial point pattern.
执行财厅的数据锐化的空间点格局。
用法----------Usage----------
sharpen(X, ...)
## S3 method for class 'ppp'
sharpen(X, sigma=NULL, ..., varcov=NULL,
edgecorrect=FALSE)
参数----------Arguments----------
参数:X
A marked point pattern (object of class "ppp").
一个显着的点模式(类的对象"ppp")。
参数:sigma
Standard deviation of isotropic Gaussian smoothing kernel.
各向同性的高斯平滑内核的标准偏差。
参数:varcov
Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with sigma.
方差 - 协方差矩阵的各向异性高斯内核。不相容的sigma。
参数:edgecorrect
Logical value indicating whether to apply edge effect bias correction.
逻辑值,该值指示是否适用于边缘效应偏置校正。
参数:...
Arguments passed to density.ppp to control the pixel resolution of the result.
参数传递给density.ppp控制的像素分辨率的结果。
Details
详细信息----------Details----------
Choi and Hall (2001) proposed a procedure for data sharpening of spatial point patterns. This procedure is appropriate for earthquake epicentres and other point patterns which are believed to exhibit strong concentrations of points along a curve. Data sharpening causes such points to concentrate more tightly along the curve.
财和Hall(2001)提出的程序数据,锐化空间点模式。这被认为是表现出很强的浓度沿曲线的点为地震震央和其他点图案,此过程是合适的。数据锐化等原因引起的点集中,更加紧密地沿曲线。
If the original data points are X[1],..., X[n] then the sharpened points are
如果原始数据点X[1],..., X[n]然后的锋利的点是
where k is a smoothing kernel in two dimensions. Thus, the new point X^[i] is a vector average of the nearby points X[j].
其中k是一个平滑的内核在两个方面。因此,在新的起点X^[i]是一个向量,平均在附近的点X[j]。
The function sharpen is generic. It currently has only one method, for two-dimensional point patterns (objects of class "ppp").
函数sharpen是通用的。目前,它只有一个方法,二维点模式(对象类"ppp")。
If sigma is given, the smoothing kernel is the isotropic two-dimensional Gaussian density with standard deviation sigma in each axis. If varcov is given, the smoothing kernel is the Gaussian density with variance-covariance matrix varcov.
如果sigma给出,平滑内核是各向同性的二维高斯密度与标准偏差sigma在每个轴上。 varcov如果,平滑的内核是高斯分布,方差 - 协方差矩阵varcov。
The data sharpening procedure tends to cause the point pattern to contract away from the boundary of the window. That is, points X_iX[i] that lie 'quite close to the edge of the window of the point pattern tend to be displaced inward. If edgecorrect=TRUE then the algorithm is modified to correct this vector bias.
数据锐化程序趋向于引起的点图案收缩远离窗口的边界。也就是说,点X_iX [i]的,该谎言相当靠近窗口的边缘的点图案的内侧位移的倾向。如果edgecorrect=TRUE然后该算法的修改,以纠正这种矢量偏差。
值----------Value----------
A point pattern (object of class "ppp") in the same window as the original pattern X, and with the same marks as X.
点模式(类的对象"ppp")在同一窗口中的原有格局X,并使用相同的标记为X。
(作者)----------Author(s)----------
Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>
参考文献----------References----------
Nonparametric analysis of earthquake point-process data. In M. de Gunst, C. Klaassen and A. van der Vaart (eds.) State of the art in probability and statistics: Festschrift for Willem R. van Zwet, Institute of Mathematical Statistics, Beachwood, Ohio. Pages 324–344.
参见----------See Also----------
density.ppp, smooth.ppp.
density.ppp,smooth.ppp。
实例----------Examples----------
data(shapley)
X <- unmark(shapley)
Y <- sharpen(X, sigma=0.5)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|