pcf.fasp(spatstat)
pcf.fasp()所属R语言包:spatstat
Pair Correlation Function obtained from array of K functions
对相关函数从一系列的K功能
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimates the (bivariate) pair correlation functions of a point pattern, given an array of (bivariate) K functions.
估计(二元)对相关功能的点模式,给定一个数组(二元)K功能。
用法----------Usage----------
## S3 method for class 'fasp'
pcf(X, ..., method="c")
参数----------Arguments----------
参数:X
An array of multitype K functions (object of class "fasp").
数组的多类型K函数(类的对象"fasp"“)。
参数:...
Arguments controlling the smoothing spline function smooth.spline.
参数控制的平滑样条函数smooth.spline。
参数:method
Letter "a", "b", "c" or "d" indicating the method for deriving the pair correlation function from the K function.
字母"a","b","c"或"d"表明K功能获得对相关功能的方法。
Details
详细信息----------Details----------
The pair correlation function of a stationary point process is
是一个固定的点过程中对相关函数
where K'(r) is the derivative of K(r), the reduced second moment function (aka “Ripley's K function”) of the point process. See Kest for information about K(r). For a stationary Poisson process, the pair correlation function is identically equal to 1. Values g(r) < 1 suggest inhibition between points; values greater than 1 suggest clustering.
K'(r) K(r)衍生,减少二阶矩(又名“里普利K函数”)的点处理功能。见Kest:信息K(r)的。对于一个固定的泊松过程,对相关函数是相同的等于1。值g(r) < 1建议点与点之间的抑制;值大于1,表明聚类。
We also apply the same definition to other variants of the classical K function, such as the multitype K functions (see Kcross, Kdot) and the inhomogeneous K function (see Kinhom). For all these variants, the benchmark value of K(r) = pi * r^2 corresponds to g(r) = 1.
我们也适用相同的定义,其他变种古典K函数,如多类型K函数(参见Kcross,Kdot)和不均匀K 函数(见Kinhom)。对于所有这些变种,K(r) = pi * r^2对应的基准值到g(r) = 1。
This routine computes an estimate of g(r) from an array of estimates of K(r) or its variants, using smoothing splines to approximate the derivatives. It is a method for the generic function pcf.
这个例程计算的估计g(r)的数组的估计K(r)或它的变种,使用平滑样条近似的衍生工具。这是一个方法的通用函数pcf。
The argument X should be a function array (object of class "fasp", see fasp.object) containing several estimates of K functions. This should have been obtained from alltypes with the argument fun="K".
参数X应该是一个函数数组(对象类"fasp",fasp.object)包含几个估计K功能。这应该已经获得alltypes的说法fun="K"。
The smoothing spline operations are performed by smooth.spline and predict.smooth.spline from the modreg library. Four numerical methods are available:
样条函数操作都是由smooth.spline和predict.smooth.splinemodreg库。四个数值方法可供选择:
"a" apply smoothing to K(r), estimate its derivative, and plug in to the formula above;
“”适用于平滑度K(r),估计它的衍生物,插在上面的公式;
"b" apply smoothing to Y(r) = K(r)/(2 * pi * r) constraining Y(0) = 0, estimate the derivative of Y, and solve;
“B”适用于平滑Y(r) = K(r)/(2 * pi * r)制约Y(0) = 0,估计Y衍生,和解决;
"c" apply smoothing to Y(r) = K(r)/(pi * r^2) constraining Z(0)=1, estimate its derivative, and solve.
“C”申请平滑Y(r) = K(r)/(pi * r^2)制约Z(0)=1,估计及其衍生物,和解决的问题。
"d" apply smoothing to V(r) = sqrt(K(r)), estimate its derivative, and solve.
“d”的申请平滑V(r) = sqrt(K(r)),估计及其衍生物,并解决。
Method "c" seems to be the best at suppressing variability for small values of r. However it effectively constrains g(0) = 1. If the point pattern seems to have inhibition at small distances, you may wish to experiment with method "b" which effectively constrains g(0)=0. Method "a" seems comparatively unreliable.
方法"c"似乎是最好的抑制变异小值r。然而,它有效地限制了g(0) = 1。如果点模式似乎有抑制作用小的距离,你不妨试验,与方法"b"这有效地限制了g(0)=0。方法"a"似乎比较不可靠的。
Useful arguments to control the splines include the smoothing tradeoff parameter spar and the degrees of freedom df. See smooth.spline for details.
有用的参数,来控制花键包括平滑权衡参数spar和度的自由df。见smooth.spline的详细信息。
值----------Value----------
A function array (object of class "fasp", see fasp.object) representing an array of pair correlation functions. This can be thought of as a matrix Y each of whose entries Y[i,j] is a function value table (class "fv") representing the pair correlation function between points of type i and points of type j.
一个函数数组(对象类"fasp",看到fasp.object)表示数组对相关功能。这可以被看作是一个矩阵YY[i,j]是一个函数值表(类"fv")代表之间的类型i点对相关函数,其作品和点类型j。
(作者)----------Author(s)----------
Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>
参考文献----------References----------
Stochastic geometry and its applications. 2nd edition. Springer Verlag.
Fractals, random shapes and point fields: methods of geometrical statistics. John Wiley and Sons.
参见----------See Also----------
Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes, smooth.spline, predict.smooth.spline
Kest,Kinhom,Kcross,Kdot,Kmulti,alltypes,smooth.spline,predict.smooth.spline
实例----------Examples----------
# multitype point pattern[多类型的点模式]
data(betacells)
KK <- alltypes(betacells, "K")
p <- pcf.fasp(KK, spar=0.5, method="b")
plot(p)
# short range inhibition between all types[抑制所有类型之间的短距离]
# strong inhibition between "on" and "off"[较强的抑制作用之间的“开”和“关”]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|