markvario(spatstat)
markvario()所属R语言包:spatstat
Mark Variogram
马克变异函数
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimate the mark variogram of a marked point pattern.
估计变差函数的一个显着的点模式的标志。
用法----------Usage----------
markvario(X, correction = c("isotropic", "Ripley", "translate"),
r = NULL, method = "density", ..., normalise=FALSE)
参数----------Arguments----------
参数:X
The observed point pattern. An object of class "ppp" or something acceptable to as.ppp. It must have marks which are numeric.
观测点的模式。类的一个对象"ppp"或接受的as.ppp的东西。它必须有数字的商标。
参数:correction
A character vector containing any selection of the options "isotropic", "Ripley" or "translate". It specifies the edge correction(s) to be applied.
字符向量含有任何选择的选项"isotropic","Ripley"或"translate"。指定,边缘校正(S)。
参数:r
numeric vector. The values of the argument r at which the mark variogram gamma(r) should be evaluated. There is a sensible default.
数字矢量。的参数的值r标志变异函数gamma(r)应进行评估。有一个合理的默认。
参数:method
A character vector indicating the user's choice of density estimation technique to be used. Options are "density", "loess", "sm" and "smrep".
要使用的字符向量表示用户选择的密度估计技术。选项"density","loess","sm"和"smrep"。
参数:...
Arguments passed to the density estimation routine (density, loess or sm.density) selected by method.
传递参数的密度估计程序(density,loess或sm.density)选择method。
参数:normalise
If TRUE, normalise the variogram by dividing it by the estimated mark variance.
如果TRUE,规范化的变差函数除以它的标志方差估计。
Details
详细信息----------Details----------
The mark variogram gamma(r) of a marked point process X is a measure of the dependence between the marks of two points of the process a distance r apart. It is informally defined as
标志变异函数gamma(r)的一个显着点过程X是衡量标记之间的依赖两个点的过程中的距离r除了。它被非正式地定义为
where E[ ] denotes expectation and M1,M2 are the marks attached to two points of the process a distance r apart.
其中E[ ]表示期望和M1,M2标记的距离r除了两个点的过程。
The mark variogram of a marked point process is analogous, but not equivalent, to the variogram of a random field in geostatistics. See Waelder and Stoyan (1996).
标志变异函数的一个标记点的过程是类似的,但不等价的,一个随机的地质统计学领域中的变异函数。见Waelder和斯托扬(1996年)。
值----------Value----------
An object of class "fv" (see fv.object).
类的一个对象"fv"(见fv.object)。
Essentially a data frame containing numeric columns
本质上是一个数据框包含数字的列
参数:r
the values of the argument r at which the mark variogram gamma(r) has been estimated
的参数的值r的标志变异函数gamma(r)已经估计
参数:theo
the theoretical value of gamma(r) when the marks attached to different points are independent; equal to the sample variance of the marks
gamma(r)连接到不同的点的标记时,是独立的;等于的标记的样本方差的理论值
together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function gamma(r) obtained by the edge corrections named.
连同一列或多列名为"iso"和/或"trans",根据选定的边修正。这些列包含的功能gamma(r)命名的边缘修正的估计。
(作者)----------Author(s)----------
Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>
参考文献----------References----------
Statistics for spatial data. John Wiley and Sons, 1991.
The threshold method for estimating annual rainfall. Annals of the Institute of Statistical Mathematics 48 (1996) 201-213.
On variograms in point process statistics. Biometrical Journal 38 (1996) 895-905.
参见----------See Also----------
Mark correlation function markcorr for numeric marks.
马克相关功能markcorr数字标记。
Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued marks.
马克连接功能markconnect和多类型K-函数Kcross,Kdot因子值的标记。
实例----------Examples----------
# Longleaf Pine data[长叶松数据]
# marks represent tree diameter[标记代表树径]
data(longleaf)
# Subset of this large pattern[这个大格局的子集]
swcorner <- owin(c(0,100),c(0,100))
sub <- longleaf[ , swcorner]
# mark correlation function[商标相关的功能]
mv <- markvario(sub)
plot(mv)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|