找回密码
 注册
查看: 327|回复: 0

R语言 spatstat包 Lcross.inhom()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 13:41:13 | 显示全部楼层 |阅读模式
Lcross.inhom(spatstat)
Lcross.inhom()所属R语言包:spatstat

                                         Inhomogeneous Cross Type L Function
                                         非均匀交叉型L功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

For a multitype point pattern,  estimate the inhomogeneous version of the cross-type L function.
对于多类型的点模式,估计非齐次版本的十字型L函数。


用法----------Usage----------


Lcross.inhom(X, i, j, ...)



参数----------Arguments----------

参数:X
The observed point pattern,  from which an estimate of the inhomogeneous cross type L function Lij(r) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.  
所观察到的点图案,从其中的估计的非均匀交叉型L函数Lij(r)将被计算。它必须是一个多类型的点模式(一个标记点图案的标记是一个因素)。请参阅“详细信息”下。


参数:i
The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).  
X距离的测量点的类型(标记值)。一个字符串(或东西都将被转换为一个字符串)。默认的第一级marks(X)。


参数:j
The type (mark value) of the points in X to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of marks(X).  
距离的测量点X的类型(标记值)。一个字符串(或东西都将被转换为一个字符串)。默认的第二个层次的marks(X)。


参数:...
Other arguments passed to Kcross.inhom.  
其他参数传递给Kcross.inhom。


Details

详细信息----------Details----------

This is a generalisation of the function Lcross to include an adjustment for spatially inhomogeneous intensity, in a manner similar to the function Linhom.
这是一个一般化的功能Lcross包括空间非均匀的强度调整,以类似的方式,在给函数Linhom。

All the arguments are passed to Kcross.inhom, which  estimates the inhomogeneous multitype K function Kij(r) for the point pattern. The resulting values are then transformed by taking L(r) = sqrt(K(r)/pi).
所有的参数被传递给Kcross.inhom,估计的非均匀多类型的K函数Kij(r)点模式。生成的值,然后转化,通过采取L(r) = sqrt(K(r)/pi)。


值----------Value----------

An object of class "fv" (see fv.object).
类的一个对象"fv"(见fv.object)。

Essentially a data frame containing numeric columns
本质上是一个数据框包含数字的列


参数:r
the values of the argument r  at which the function Lij(r) has been  estimated  
的参数的值的r在哪些函数Lij(r)已估计


参数:theo
the theoretical value of  Lij(r) for a marked Poisson process, identically equal to r  
的理论值Lij(r)显着的泊松过程,恒等于r

together with a column or columns named  "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function Lij(r) obtained by the edge corrections named.
连同一列或多列名为"border","bord.modif","iso"和/或"trans",根据选定的边修正。这些列包含的功能Lij(r)命名的边缘修正的估计。


警告----------Warnings----------

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted to character strings if they are not already character strings. The value i=1 does not refer to the first level of the factor.
的参数i和j总是被解释为水平的因素X$marks。它们被转换为字符串,如果他们不已经字符串。值i=1不是指第一级的因素。


(作者)----------Author(s)----------


Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>




参考文献----------References----------

Statistical Inference and Simulation for Spatial Point Processes Chapman and Hall/CRC Boca Raton, 2003.

参见----------See Also----------

Lcross, Linhom, Kcross.inhom
Lcross,Linhom,Kcross.inhom


实例----------Examples----------


    # Lansing Woods data[蓝星伍兹数据]
    data(lansing)
    lansing <- lansing[seq(1,lansing$n, by=10)]
    ma <- split(lansing)$maple
    wh <- split(lansing)$whiteoak

    # method (1): estimate intensities by nonparametric smoothing[方法(1):平滑非参数估计强度]
    lambdaM <- density.ppp(ma, sigma=0.15, at="points")
    lambdaW <- density.ppp(wh, sigma=0.15, at="points")
    L <- Lcross.inhom(lansing, "whiteoak", "maple", lambdaW, lambdaM)

    # method (2): fit parametric intensity model[方法(2):合适的参数强度模型]
    fit <- ppm(lansing, ~marks * polynom(x,y,2))
    # evaluate fitted intensities at data points[评估合身的强度,数据点]
    # (these are the intensities of the sub-processes of each type)[(这些每种类型的子流程的强度)]
    inten <- fitted(fit, dataonly=TRUE)
    # split according to types of points[分裂根据类型的点]
    lambda <- split(inten, lansing$marks)
    L <- Lcross.inhom(lansing, "whiteoak", "maple",
              lambda$whiteoak, lambda$maple)
   
    # synthetic example: type A points have intensity 50,[合成例如:键入一个点的强度为50,]
    #                    type B points have intensity 100 * x[B型点的强度为100 * X]
    lamB <- as.im(function(x,y){50 + 100 * x}, owin())
    X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
    L <- Lcross.inhom(X, "A", "B",
        lambdaI=as.im(50, X$window), lambdaJ=lamB)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-15 23:26 , Processed in 0.021706 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表