effectfun(spatstat)
effectfun()所属R语言包:spatstat
Compute Fitted Effect of a Spatial Covariate in a Point Process Model
在一个点过程模型计算合身的空间协变量的影响
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Compute the trend or intensity of a fitted point process model as a function of one of its covariates.
之一的协变量的函数的拟合点过程模型计算的趋势或强度。
用法----------Usage----------
effectfun(model, covname, ..., se.fit=FALSE)
参数----------Arguments----------
参数:model
A fitted point process model (object of class "ppm").
已安装点过程模型(对象类"ppm"“)。
参数:covname
The name of the covariate. A character string.
的协变量的名称。一个字符串。
参数:...
The fixed values of other covariates (in the form name=value) if required.
其他变量的固定值(以name=value)如果需要的话。
参数:se.fit
Logical. If TRUE, asymptotic standard errors of the estimates will be computed, together with a 95% confidence interval.
逻辑。如果TRUE,的渐近标准的错误估计将被计算,加上95%的置信区间。
Details
详细信息----------Details----------
The object model should be an object of class "ppm" representing a point process model fitted to point pattern data.
model的对象应该是一个类的对象"ppm"代表一个点过程模型拟合点模式数据。
The model's trend formula should involve a spatial covariate named covname. This could be "x" or "y" representing one of the Cartesian coordinates. More commonly the covariate is another, external variable that was supplied when fitting the model.
模型的趋势的公式应该包括空间的协变量名为covname。这可能是"x"或"y"在直角坐标系的代表之一。更常见的协变量,外部变量拟合模型时提供的。
The command effectfun computes the fitted trend of the point process model as a function of the covariate named covname. The return value can be plotted immediately, giving a plot of the fitted trend against the value of the covariate.
命令effectfun计算拟合趋势的点处理model名为covname协变量的函数。返回值可以立即被绘制,给人一种图的协变量的值对拟合的趋势。
If the model also involves covariates other than covname, then these covariates will be held fixed. Values for these other covariates must be provided as arguments to effectfun in the form name=value.
如果该模型还包括协变量以外covname,那么这些相关变量将被固定。这些其他变量的值必须提供参数effectfun的形式name=value的。
If se.fit=TRUE, the algorithm also calculates the asymptotic standard error of the fitted trend, and a (pointwise) asymptotic 95% confidence interval for the true trend.
如果se.fit=TRUE,该算法还可以计算的渐近标准误差拟合的趋势,(逐点)渐近95%的置信区间的真正趋势。
This command is just a wrapper for the prediction method predict.ppm. For more complicated computations about the fitted intensity, use predict.ppm.
该命令只是一个包装的预测方法predict.ppm。对于更复杂的安装强度的计算,使用predict.ppm。
值----------Value----------
A data frame containing a column of values of the covariate and a column of values of the fitted trend. If se.fit=TRUE, there are 3 additional columns containing the standard error and the upper and lower limits of a confidence interval.
一个数据框包含的协变量的值,一列一列的值的拟合趋势。如果se.fit=TRUE,有3个附加列中包含的标准误差和置信区间的上限和下限。
If the covariate named covname is numeric (rather than a factor or logical variable), the return value is also of class "fv" so that it can be plotted immediately.
如果协变量的命名covname是数字(而不是一个因素或逻辑变量),返回值是类"fv",以便它可以立即被绘制。
趋势和强度----------Trend and intensity----------
For a Poisson point process model, the trend is the same as the intensity of the point process. For a more general Gibbs model, the trend is the first order potential in the model (the first order term in the Gibbs representation). In Poisson or Gibbs models fitted by ppm, the trend is the only part of the model that depends on the covariates.
对于泊松点过程模型,趋势是相同的点过程的强度。对于更一般的吉布斯模型的趋势是一阶的潜力模型(一阶项中的吉布斯表示)。在泊松或吉布斯模型拟合ppm的趋势是依赖于协变量的模型只是其中的一部分。
(作者)----------Author(s)----------
Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>
参见----------See Also----------
ppm, predict.ppm, fv.object
ppm,predict.ppm,fv.object
实例----------Examples----------
data(copper)
X <- copper$SouthPoints
D <- distmap(copper$SouthLines)
fit <- ppm(X, ~polynom(Z, 5), covariates=list(Z=D))
plot(effectfun(fit, "Z"))
plot(effectfun(fit, "Z", se.fit=TRUE), shade=c("hi", "lo"))
fit <- ppm(X, ~x + polynom(Z, 5), covariates=list(Z=D))
plot(effectfun(fit, "Z", x=20))
fit <- ppm(X, ~x)
plot(effectfun(fit, "x"))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|