summarize.peaks(BayesPeak)
summarize.peaks()所属R语言包:BayesPeak
Summarize Peaks
总结峰
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Summarize Peaks - Combine the potentially enriched bins found by BayesPeak into contiguous peaks, and associate each with a posterior probability. summarise.peaks is an alias for summarize.peaks
总结群山 - 结合潜在的丰富由BayesPeak到相邻峰箱,并关联每一个后验概率。 summarise.peaks是summarize.peaks的别名
用法----------Usage----------
summarize.peaks(x, threshold = 0.5, method = c("lowerbound", "max"), exclude.jobs = NULL)
summarise.peaks(x, threshold = 0.5, method = c("lowerbound", "max"), exclude.jobs = NULL)
参数----------Arguments----------
参数:x
Raw output from the function bayespeak.
从原料输出功能bayespeak。
参数:threshold
Numeric vector. threshold must have length equal to either 1 or nrow(x$QC) (i.e. the number of jobs).
数字向量。 threshold长度必须等于1或nrow(x$QC)(即就业人数)。
If threshold is of length 1, then for each job, all bins with a posterior probability (PP) lower than threshold will be discarded before summarising.
threshold如果是长度为1,然后为每个作业,后验概率(PP)的所有箱比threshold将丢弃前总结性较低。
If threshold is of length nrow(x$QC), then jobs are taken to have separate thresholds - in other words, bins in job i will be discarded if they have a PP less than threshold[i]. Note that this behaviour is irrespective of how many jobs are excluded (see the exclude.jobs argument below) - excluded jobs are still assigned a PP threshold, which is essentially ignored.
如果threshold长度nrow(x$QC),然后工作采取有单独的阈值 - 换句话说,我在工作箱将被丢弃,如果他们有一个PP大于阈值[I]。请注意,这种行为是不论有多少职位被排除在外(见的下面exclude.jobs参数) - 排除工作仍分配一个PP的阈值,基本上是忽略。
参数:method
The method used to combine the posterior probabilities of multiple peaks. Current methods are:
所采用的方法相结合的多峰的后验概率。目前的方法是:
lowerbound: A lower bound is found for the posterior probability of the region containing a peak. In contiguous regions of moderately high probability, this method should report a fairer value than method = max. Suppose we have a set of n non-intersecting calls within our region, with posterior probabilities p_1 to p_n respectively of containing peaks. Then the probability of there being a peak in this region is at least 1 - (1-p_1)...(1-p_n). We maximise this over all possible sets of non-intersecting calls within the region. (Usually, this will simply be a choice between exclusively using the offset or the non-offset analyses.)
lowerbound:下界被发现含有一个峰值后该区域的概率。在适度的高概率的连续区域,此方法应报告比method = max公平价值。假设我们与了n不相交的呼吁在本区域的后验概率集,p_1p_n分别含有峰。然后有在这一区域的峰值的概率至少的1 - (1-p_1)...(1-p_n)。我们最大限度地提高了区域内的非交叉调用的所有可能的套。 (通常情况下,这只会是一个专门使用的偏移或偏移分析之间的选择。)
max: Combined region has probability equal to the maximum posterior probability over all the peaks it contains.
max:结合区域拥有超过它所包含的所有山峰的最大后验概率的概率相等。
参数:exclude.jobs
A vector of integers, denoting jobs to be excluded from later analysis. Alternatively, a logical vector (to be passed through which()).
一个整数,表示工作的向量,被排除在以后的分析。另外,逻辑向量(可通过which())。
值----------Value----------
A RangedData object corresponding to the peaks called - each range has an associated PP (Posterior Probability) value.
峰对应一个RangedData对象称为 - 每个范围有关联的PP值(后验概率)。
作者(S)----------Author(s)----------
Jonathan Cairns
参见----------See Also----------
bayespeak.
bayespeak。
举例----------Examples----------
dir <- system.file("extdata", package="BayesPeak")
treatment <- file.path(dir, "H3K4me3reduced.bed")
input <- file.path(dir, "Inputreduced.bed")
##look at specific region 92-95Mb on chromosome 16[#看看16号染色体上的特定区域的92-95MB]
##(we've used half the number of iterations here to reduce the time this example takes)[#(我们已经使用一半数量的迭代,以减少这个例子所需要的时间)]
raw.output <- bayespeak(treatment, input, chr = "chr16", start = 9.2E7, end = 9.5E7, iterations = 5000L, use.multicore = TRUE)
output <- summarize.peaks(raw.output)
output
##higher threshold[#阈值较高]
output.ht <- summarize.peaks(raw.output, threshold = 0.9)
output.ht
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|