upscale2d(SpatialVx)
upscale2d()所属R语言包:SpatialVx
Perform upscaling neighborhood verification on a 2-d verification set
执行倍增附近的2-D验证验证集
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Perform upscaling neighborhood veriication on a 2-d verification set.
执行倍增的附近veriication上的2-D验证集。
用法----------Usage----------
upscale2d(object, thresholds = NULL, verbose = FALSE)
## S3 method for class 'upscale2d'
plot(x, ...)
参数----------Arguments----------
参数:object
list object output from the hoods2dPrep function.
列表对象的输出hoods2dPrep功能的。
参数:thresholds
(optional) alternative thresholds to use on the upscaled fields. If NULL, the thresholds from the hoods2dPrep object are used.
(可选)替代阈值上使用放大的领域。如果为NULL,阈值hoods2dPrep对象。
参数:verbose
logical, should progress information be printed to the screen?
逻辑的发展,应以信息打印到屏幕上?
参数:x
list object of class "upscale2d" as returned by upscale2d.
列表对象类“upscale2d”返回upscale2d。
参数:...
optional arguments to the image.plot function from package fields.
从包装image.plotfields功能的可选参数。
Details
详细信息----------Details----------
Upscaling is performed via neighborhood smoothing. Here, a boxcar kernel is convolved (using the convolution theorem with FFT's) to obtain an average over the nearest n^2 grid squares at each grid point. This is performed on the raw forecast and verification fields. The root mean square error (RMSE) is taken for each threshold (Yates et al., 2006; Ebert, 2008). Further, binary fields are obtained for each smoothed field via thresholding, and frequency bias, threat score ts) and equitable threat score (ets) are calculated (Zepeda-Arce et al., 2000; Ebert, 2008).
像素提升进行通过邻里平滑。在这里,一个棚车内核进行卷积(使用FFT的卷积定理)以得到平均超过最接近的N ^ 2方格在每个网格点。这是上执行的原始预测和检验场。的根均方误差(RMSE)为每个阈值(Yates等人,2006;埃伯特,2008)。此外,二进制字段的每一个平滑的领域获得通过阈值,频率偏差,威胁得分ts)和公正预兆得分(ETS)计算(塞佩达阿尔塞等人,2000;艾伯特,2008年)。
值----------Value----------
upscale2d returns a list of class "upscale2d" with components:
upscale2d返回一个列表类“upscale2d”的组件:
参数:rmse
numeric vector giving the root mean square error for each neighborhood size provided by object.
数字矢量,根均方误差所提供的对象为每个邻域大小。
参数:bias,ts,ets
numeric matrices giving the frequency bias, ts and ets for each neighborhood size (rows) and threshold (columns).
数字矩阵的频率偏差,TS和ETS为每个邻域的大小(行)和阈值(列)。
(作者)----------Author(s)----------
Eric Gilleland
参考文献----------References----------
参见----------See Also----------
hoods2d, hoods2dPrep, kernel2dsmooth, kernel2dmeitsjer, fft
hoods2d,hoods2dPrep,kernel2dsmooth,kernel2dmeitsjer,fft
实例----------Examples----------
x <- matrix( 0, 50, 50)
x[ sample(1:50,10), sample(1:50,10)] <- rexp( 100, 0.25)
y <- kernel2dsmooth( x, kernel.type="disk", r=6.5)
x <- kernel2dsmooth( x, kernel.type="gauss", nx=50, ny=50, sigma=3.5)
hold <- hoods2dPrep("y", "x", thresholds=c(1e-8, 0.05, 0.1), levels=c(1, 3, 20))
look <- upscale2d( hold, thresholds=seq(0.01,1,,5))
look
plot( look)
## Not run: plot( look)[#不运行:图(外观)]
## Not run: [#不运行:]
data(geom001)
data(geom000)
data(ICPg240Locs)
hold <- hoods2dPrep( "geom001", "geom000", thresholds=c(0.01,50.01), levels=c(1, 3, 9, 17, 33, 65, 129, 257), loc=ICPg240Locs, units="in/100")
look <- upscale2d(hold, thresholds=c(1e-8, 0.1, 0.5, 45, 50.1), verbose=TRUE)
plot( look) # Might want to use 'pdf' to print these out so that all of them can be observed.[可能要使用“PDF”来打印这些出来,让所有的人都可以观察到。]
data(pert004)
data(pert000)
hold <- hoods2dPrep( "pert004", "pert000", thresholds=c(1,10,50), levels=c(1, 3, 17, 33, 65, 129, 257), loc=ICPg240Locs, units="mm/h")
look <- upscale2d( hold, thresholds=c(1e-8, 3:5, 45, 50.1), verbose=TRUE)
plot( look)
## End(Not run)[#(不执行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|