Shape matrices(SpatialNP)
Shape matrices()所属R语言包:SpatialNP
Shape matrices based on spatial ranks and signed ranks
形状空间的职级和符号秩矩阵的基础上
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Iterative algorithms to find shape matrices based on
迭代算法来找到形状矩阵的基础上
用法----------Usage----------
spatial.shape(X, score = c("sign", "symmsign", "rank", "signrank"),
fixed.loc = FALSE, location = NULL, init = NULL, steps = Inf,
eps = 1e-06, maxiter = 100, na.action = na.fail)
signs.shape(X, fixed.loc = FALSE, location = NULL, init = NULL,
steps = Inf, eps = 1e-6, maxiter = 100, na.action = na.fail)
symmsign.shape(X, init = NULL, steps = Inf, eps = 1e-6,
maxiter = 100, na.action = na.fail)
rank.shape(X, init = NULL, steps = Inf, eps = 1e-06,
maxiter = 100, na.action = na.fail)
signrank.shape(X, fixed.loc = FALSE, location = NULL, init = NULL,
steps = Inf, eps = 1e-06, maxiter = 100, na.action = na.fail)
参数----------Arguments----------
参数:X
a matrix or a data frame
一个矩阵或一个数据框
参数:score
a character string indicating which transformation of the observations should be used
改造的意见,应使用一个字符串,指示
参数:fixed.loc
a logical, see details
一个逻辑,详情请参阅
参数:location
an optional vector giving the location of the data or the initial value for the location if it is estimated
一个可选的矢量估计的数据的位置或位置的初始值,如果它
参数:init
an optional starting value for the iteration
可选的起始值迭代
参数:steps
fixed number of iteration steps to take, if Inf iteration is repeated until convergence (or until maxiter steps)
固定数量的迭代步数,如果Inf重复迭代,直到收敛(或直到maxiter步骤)
参数:eps
tolerance for convergence
容忍收敛
参数:maxiter
maximum number of iteration steps. Ignored if steps is finite
最大迭代步数。如果忽略steps是有限
参数:na.action
a function which indicates what should happen when the data contain 'NA's. Default is to fail.
一个函数,它表示时会发生什么数据包含“NA”。默认是要失败的。
Details
详细信息----------Details----------
sign.shape (Tyler's shape matrix), symmsign.shape (Duembgen's shape matrix), rank.shape and signrank.shape are the so called inner standardization matrices of location etc. tests based on spatial signs and ranks. When data is standardized using these matrices the corresponding sign or rank scores will appear “uncorrelated”: the corresponding outer standardization matrices will be proportional to the identity matrix, see examples.
sign.shape(Tyler的形状矩阵),symmsign.shape(Duembgen的形状矩阵),rank.shape和signrank.shape是所谓的内部标准化矩阵的位置等试验的基础上空间的迹象和的行列。当数据标准化使用这些矩阵相应的标志或等级分数会出现“不相关”,相应的外的标准化矩阵将是成正比的身份矩阵,看到的例子。
spatial.shape is a wrapper function for a unified access to all four shape estimates. The choice of estimate is done via score:
spatial.shape是一个包装函数为一个统一的访问所有四种形状估计。估计的选择是通过score:
"sign" for signs.shape
"sign"signs.shape的
"symmsign" for symmsign.shape
"symmsign"symmsign.shape的
"rank" for rank.shape
"rank"rank.shape的
"signrank" for signrank.shape
"signrank"signrank.shape的
signrank.shape and sign.shape include options to compute the shape matrix either with respect to fixed location (fixed.loc = TRUE) or so that the location and the shape are estimated simultaneously (fixed.loc = FALSE).
signrank.shape和sign.shape包括无论是相对于固定的位置(的形状来计算矩阵的选项fixed.loc = TRUE)或这样的位置及形状的同时估计(fixed.loc = FALSE)。
值----------Value----------
The estimate matrix with the (final estimate of or given) location vector as attribute "location".
估计矩阵的属性"location"(最后估计)的位置向量。
(作者)----------Author(s)----------
Seija Sirkia, <a href="mailto:seija.sirkia@iki.fi">seija.sirkia@iki.fi</a>, Jari Miettinen, <a href="mailto:jari.p.miettinen@jyu.fi">jari.p.miettinen@jyu.fi</a>
参考文献----------References----------
<h3>See Also</h3>
实例----------Examples----------
A<-matrix(c(1,2,-3,4,3,-2,-1,0,4),ncol=3)
X<-matrix(rnorm(1500),ncol=3)%*%t(A)
symmsign.shape(X)
to.shape(symmsign.shape(X),trace=3)
spatial.shape(X,score="sign")
spatial.shape(X,score="sign",fixed.loc=TRUE)
to.shape(A%*%t(A))
# one-step shape estimate based on spatial ranks and covariance matrix:[阶梯形状估计根据空间的职级和协方差矩阵:]
spatial.shape(X,score="rank",init=cov(X),steps=1)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|