找回密码
 注册
查看: 369|回复: 0

R语言 sna包 nacf()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 10:56:40 | 显示全部楼层 |阅读模式
nacf(sna)
nacf()所属R语言包:sna

                                         Sample Network Covariance and Correlation Functions
                                         样本的网络协方差和相关函数

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

nacf computes the sample network covariance/correlation function for a specified variable on a given input network.  Moran's I and Geary's C statistics at multiple orders may be computed as well.
nacf计算的指定的变量在一个给定的输入网络的示例网络协方差/相关函数。莫兰I和Geary的C统计多个订单可能会被计算为好。


用法----------Usage----------


nacf(net, y, lag.max = NULL, type = c("correlation", "covariance",
    "moran", "geary"), neighborhood.type = c("in", "out", "total"),
    partial.neighborhood = TRUE, mode = "digraph", diag = FALSE,
    thresh = 0, demean = TRUE)



参数----------Arguments----------

参数:net
one or more graphs.
一个或多个图形。


参数:y
a numerical vector, of length equal to the order of net.
一个数值向量,长度等于net的顺序。


参数:lag.max
optionally, the maximum geodesic lag at which to compute dependence (defaults to order net-1).
可选,最大的大地测量学的滞后计算的依赖(默认为订购net-1)。


参数:type
the type of dependence statistic to be computed.
类型的依赖统计计算。


参数:neighborhood.type
the type of neighborhood to be employed when assessing dependence (as per neighborhood).
评估依赖(每neighborhood)时,附近的类型。


参数:partial.neighborhood
logical; should partial (rather than cumulative) neighborhoods be employed at higher orders?
逻辑,在较高的订单部分(而不是累计)的社区吗?


参数:mode
"digraph" for directed graphs, or "graph" if net is undirected.
"digraph"对于有向图,或"graph"如果net是无向的。


参数:diag
logical; does the diagonal of net contain valid data?
逻辑,但对角线的net包含有效的数据?


参数:thresh
threshold at which to dichotomize net.
阈值二分net。


参数:demean
logical; demean y prior to analysis?
逻辑;贬低y之前的分析吗?


Details

详细信息----------Details----------

nacf computes dependence statistics for the vector y on network net, for neighborhoods of various orders.  Specifically, let A_i be the ith order adjacency matrix of net.  The sample network autocovariance of y on A_i is then given by
nacf计算依赖统计的向量y网络上的net,为各种订单的区域。具体来说,我们A_i是i阶邻接矩阵的net。的样本网络自相关yA_i然后由

</i>
</ P>

</i>
</ P>

</i>
</ P>

The adjacency matrix associated with the ith order neighborhood is defined as the identity matrix for order 0, and otherwise depends on the type of neighborhood involved.  For input graph G=(V,E), let the base relation, R, be given by the underlying graph of G (i.e., G U G^T) if total neighborhoods are sought, the transpose of G if incoming neighborhoods are sought, or G otherwise.  The partial neighborhood structure of order i>0 on R is then defined to be the digraph on V whose edge set consists of the ordered pairs (j,k) having geodesic distance i in R.  The corresponding cumulative neighborhood is formed by the ordered pairs having geodesic distance less than or equal to i in R.  For purposes of nacf, these neighborhoods are calculated using neighborhood, with the specified parameters (including dichotomization at thresh).
与相关联的邻接矩阵i阶邻域被定义为0阶的单位矩阵,并以其他方式取决于所涉及的类型的附近。输入图G=(V,E),让碱基的关系,R,底层的图G(即G U G^T)如果总邻里要求,在转G如果传入的社区,或寻求G否则。为了局部邻域结构i>0R被定义为有向图上V的边集组成的有序对(j,k)测地距离i 中R。相应的累积分数:形成由有序对具有测地距离小于或等于i在R。为了nacf,这些居民区使用neighborhood,用指定的参数(包括二分法thresh计算)。

The return value for nacf is the selected dependence statistic, calculated for each neighborhood structure from order 0 (the identity) through order lag.max (or N-1, if lag.max==NULL).  This vector can be used much like the conventional autocorrelation function, to identify dependencies at various lags.  This may, in turn, suggest a starting point for modeling via routines such as lnam.
nacf的返回值是选定的依赖统计,从顺序0(标识)通过计算每一个邻域结构lag.max(N-1如果lag.max==NULL)。该向量很像传统的自相关函数,可以使用,以确定在不同的滞后的依赖。这可能,反过来,建议通过例程如lnam建模的一个起点。


值----------Value----------

A vector containing the dependence statistics (ascending from order 0).
一个向量,包含的依赖统计(升序从0阶)。


(作者)----------Author(s)----------


Carter T. Butts <a href="mailto:buttsc@uci.edu">buttsc@uci.edu</a>



参考文献----------References----------

Geary, R.C. (1954). &ldquo;The Contiguity Ratio and Statistical Mapping.&rdquo; The Incorporated Statistician, 5: 115-145.
Moran, P.A.P.  (1950).  &ldquo;Notes on Continuous Stochastic Phenomena.&rdquo;  Biometrika, 37: 17-23.

参见----------See Also----------

geodist, gapply, neighborhood, lnam, acf
geodist,gapply,neighborhood,lnam,acf


实例----------Examples----------


#Create a random graph, and an autocorrelated variable[创建一个随机图,自相关变量]
g<-rgraph(50,tp=4/49)
y<-qr.solve(diag(50)-0.8*g,rnorm(50,0,0.05))

#Examine the network autocorrelation function[检查网络的自相关函数]
nacf(g,y)                             #Partial neighborhoods[部分街区]
nacf(g,y,partial.neighborhood=FALSE)  #Cumulative neighborhoods[累计街区]

#Repeat, using Moran's I on the underlying graph[重复使用莫兰我对底层的图]
nacf(g,y,type="moran")
nacf(g,y,partial.neighborhood=FALSE,type="moran")


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-6 14:09 , Processed in 0.027106 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表