找回密码
 注册
查看: 622|回复: 0

R语言 sna包 consensus()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 10:49:41 | 显示全部楼层 |阅读模式
consensus(sna)
consensus()所属R语言包:sna

                                         Estimate a Consensus Structure from Multiple Observations
                                         估计一个共识结构从多个观测

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

consensus estimates a central or consensus structure given multiple observations, using one of several algorithms.
consensus估计中央或共识结构多观察,使用的几种算法。


用法----------Usage----------


consensus(dat, mode="digraph", diag=FALSE, method="central.graph",
    tol=1e-06, maxiter=1e3, verbose=TRUE, no.bias=FALSE)



参数----------Arguments----------

参数:dat
a set of input graphs (must have same order).
输入图的一组(必须有相同的顺序)。


参数:mode
"digraph" for directed data, else "graph".
"digraph"定向数据,否则"graph"。


参数:diag
logical; should diagonals (loops) be treated as data?
逻辑,对角线(循环)被视为数据?


参数:method
one of "central.graph", "single.reweight", "iterative.reweight", "romney.batchelder", "PCA.reweight", "LAS.intersection", "LAS.union", "OR.row", or "OR.col".  
"central.graph","single.reweight","iterative.reweight","romney.batchelder","PCA.reweight","LAS.intersection","LAS.union","OR.row",或"OR.col"。


参数:tol
convergence tolerance for the iterative reweighting and B-R algorithms.
迭代权重调整和BR算法的收敛公差。


参数:maxiter
maximum number of iterations to take (regardless of convergence) for the iterative reweighting and B-R algorithms.
最大迭代次数(权重调整和BR算法的迭代收敛)。


参数:verbose
logical; should bias and competency parameters be reported (where computed)?
逻辑,报告偏见和能力参数(如果计算)?


参数:no.bias
logical; should responses be assumed to be unbiased?  
逻辑;反应应被假定为是公正的吗?


Details

详细信息----------Details----------

The term “consensus structure” is used by a number of authors to reflect a notion of shared or common perceptions of social structure among a set of observers.  As there are many interpretations of what is meant by “consensus” (and as to how best to estimate it), several algorithms are employed here:
“共识结构”所使用的一些作者,以反映概念的共享或公共的社会结构的认识在一组的观察员。由于有很多的解释是什么意思“共识”(以及如何以最佳估计),采用几种算法在这里:

<ol> central.graph: Estimate the consensus structure using the central graph.  This corresponds to a &ldquo;median response&rdquo; notion of consensus.
<OL>central.graph:估计的共识结构,使用中央图。这相当于一个“平均响应”概念的共识。

single.reweight: Estimate the consensus structure using subject responses, reweighted by mean graph correlation.  This corresponds to an &ldquo;expertise-weighted vote&rdquo; notion of consensus.
single.reweight:估计结构,使用对象的反应,再加权平均图形相关的共识。这相当于一个“专业知识加权票”的概念达成共识。

iterative.reweight: Similar to single.reweight, but the consensus structure and accuracy parameters are estimated via an iterated proportional fitting scheme.  The implementation employed here uses both bias and competency parameters.
iterative.reweight:类似single.reweight,但达成共识的结构和精度参数估计通过一个迭代的比例装修方案。这里采用的实施,使用参数偏差和竞争力。

romney.batchelder: Fits a Romney-Batchelder informant accuracy model using IPF.  This is very similar to iterative.reweight, but can be interpreted as the result of a process in which each informant report is correct with a probability equal to the informant's competency score, and otherwise equal to a Bernoulli trial with parameter equal to the informant's bias score.
romney.batchelder:适合使用IPF一个罗姆尼的巴彻尔德的线人准确度模型。这是非常类似于iterative.reweight,但可以解释为一个过程,其中每个线人报告是正确的概率等于线人的能力得分,否则等于参数等于一个伯努利试验的结果报案人的偏见得分。

PCA.reweight: Estimate the consensus using the (scores on the) first component of a network PCA.  This corresponds to a &ldquo;shared theme&rdquo; or &ldquo;common element&rdquo; notion of consensus.
PCA.reweight:估算的共识使用的(分数)网络PCA的第一个组成部分。这相当于一个“共同主题”或“共同元素”概念的共识。

LAS.intersection: Estimate the consensus structure using the locally aggregated structure (intersection rule).  In this model, an i->j edge exists iff i and j agree that it exists.
LAS.intersection:估计的共识结构采用局部聚集结构(交叉口规则)。在这个模型中,存在的i-> j的边,当且仅当i和j同意它的存在。

LAS.union: Estimate the consensus structure using the locally aggregated structure (union rule).  In this model, an i->j edge exists iff i or j agree that it exists.
LAS.union:估计的共识结构,使用局部聚集结构(工会规则)。在这个模型中,存在的i-> j的边,当且仅当i和j同意它的存在。

OR.row: Estimate the consensus structure using own report.  Here, we take each informant's outgoing tie reports to be correct.
OR.row:估计的共识结构,使用自己的报告。在这里,我们需要,每个线人即将离任的领带报告是正确的。

OR.col: Estimate the consensus structure using own report.  Here, we take each informant's incoming tie reports to be correct. </ol>
OR.col:估计的共识结构,使用自己的报告。在这里,我们采取每一个线人的传入领带报告是正确的。 </ OL>

Note that the results returned by the single weighting algorithms are not dichotomized by default; since some algorithms thus return valued graphs, dichotomization may be desirable prior to use.
请注意,返回的结果由单一的加权算法二默认情况下,返回价值,因为有些算法图形,的二分法可能会是可取的前使用。

It should be noted that a model for estimating an underlying criterion structure from multiple informant reports is provided in bbnam; if your goal is to reconstruct an &ldquo;objective&rdquo; network from informant reports, this (or the R-B model) may prove more useful than the ad-hoc solutions.
应该指出,估计的基本标准结构的模型从多个线人报告中提供bbnam如果你的目标是重建一个“客观”的网络从线人报告,今(或RB模型)证明有用特设的解决方案。


值----------Value----------

An adjacency matrix representing the consensus structure
邻接矩阵表示的共识结构


(作者)----------Author(s)----------


Carter T. Butts <a href="mailto:buttsc@uci.edu">buttsc@uci.edu</a>



参考文献----------References----------

Banks, D.L., and Carley, K.M.  (1994).  &ldquo;Metric Inference for Social Networks.&rdquo;  Journal of Classification,  11(1), 121-49.
Butts, C.T., and Carley, K.M.  (2001).  &ldquo;Multivariate Methods for Inter-Structural Analysis.&rdquo;  CASOS Working Paper, Carnegie Mellon University.
Krackhardt, D.  (1987).  &ldquo;Cognitive Social Structures.&rdquo; Social Networks, 9, 109-134.
Romney, A.K.; Weller, S.C.; and Batchelder, W.H.  (1986).  &ldquo;Culture as Consensus: A Theory of Culture and Informant Accuracy.&rdquo;  American Anthropologist, 88(2), 313-38.

参见----------See Also----------

bbnam, centralgraph
bbnam,centralgraph


实例----------Examples----------



#Generate some test data[生成一些测试数据。]
g<-rgraph(5)
g.pobs<-g*0.9+(1-g)*0.5
g.obs<-rgraph(5,5,tprob=g.pobs)

#Find some consensus structures[查找了一些共识结构]
consensus(g.obs)                           #Central graph[中央图]
consensus(g.obs,method="single.reweight")  #Single reweighting[单权重调整]
consensus(g.obs,method="PCA.reweight")     #1st component in network PCA[在网络PCA的第一组件]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-6 14:02 , Processed in 0.025955 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表