pickands(smoothtail)
pickands()所属R语言包:smoothtail
Compute original and smoothed version of Pickands' estimator
计算和平滑的Pickands估计
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Given an ordered sample of either exceedances or upper order statistics which is to be modeled using a GPD, this function provides Pickands' estimator of the shape parameter γ \in [-1,0]. Precisely, for k=4, …, n
给定一个有序样品的超标或上订单统计数据进行建模使用GPD,此功能提供Pickands估计形状参数γ \in [-1,0]。确切地说,对于k=4, …, n
for $H$ either the empirical or the distribution function \hat F_n based on the log–concave density estimator and
为$ H $或经验分布函数\hat F_n的基础上对数凹的密度估计和
if H is the empirical distribution function and
如果H是经验分布函数,
if H = \hat F_n.
如果H = \hat F_n。
用法----------Usage----------
pickands(est, ks = NA)
参数----------Arguments----------
参数:est
Log-concave density estimate based on the sample as output by logConDens (a dlc object).
登录凹根据样本的密度估计为输出logConDens(dlc对象)。
参数:ks
Indices k at which Falk's estimate should be computed. If set to NA defaults to 4, …, n.
指数kFalk的估计应计算。如果设置为NA默认为4, …, n的。
值----------Value----------
n x 3 matrix with columns: indices k, Pickands' estimator using the log-concave density estimate, and the ordinary Pickands' estimator based on the order statistics.
NX 3的矩阵的列:指数k,Pickands估计使用的登录凹的密度估计,和普通的Pickands估计次序统计量的基础上。
(作者)----------Author(s)----------
Kaspar Rufibach (maintainer), <a href="mailto:kaspar.rufibach@gmail.com">kaspar.rufibach@gmail.com</a>, <br> <a href="http://www.kasparrufibach.ch">http://www.kasparrufibach.ch</a>
Samuel Mueller, <a href="mailto:s.mueller@maths.usyd.edu.au">s.mueller@maths.usyd.edu.au</a>, <br> <a href="http://www.maths.usyd.edu.au/ut/people?who=S_Mueller">http://www.maths.usyd.edu.au/ut/people?who=S_Mueller</a>
Kaspar Rufibach acknowledges support by the Swiss National Science Foundation SNF, <a href="http://www.snf.ch">http://www.snf.ch</a>
参考文献----------References----------
Smooth tail index estimation. J. Stat. Comput. Simul., 79, 1155–1167.
Statistical inference using extreme order statistics. Annals of Statistics 3, 119–131.
参见----------See Also----------
Other approaches to estimate γ based on the fact that the density is log–concave, thus
其他方法来估计γ,从而根据一个事实,即密度为log凹
实例----------Examples----------
# generate ordered random sample from GPD[形成有序的随机抽样GPD]
set.seed(1977)
n <- 20
gam <- -0.75
x <- rgpd(n, gam)
## generate dlc object[#生成DLC对象]
est <- logConDens(x, smoothed = FALSE, print = FALSE, gam = NULL, xs = NULL)
# compute tail index estimators[计算尾部指数估计]
pickands(est)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|