generalizedPick(smoothtail)
generalizedPick()所属R语言包:smoothtail
Compute generalized Pickand's estimator
计算广义Pickand的估计
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Given an ordered sample of either exceedances or upper order statistics which is to be modeled using a GPD with distribution function F, this function provides Segers' estimator of the shape parameter γ, see Segers (2005). Precisely, for k = \{1, …, n-1\}, the estimator can be written as
有序样品的超标或上为了统计的是使用GPD分布函数建模F,此功能提供塞赫尔斯“的形状参数估计γ,看到塞赫尔斯”(2005年)。精确地说,为k = \{1, …, n-1\},估计可以被写为
for H either the empirical or the distribution function based on the log–concave density estimator and λ the mixing measure given in Segers (2005), Theorem 4.1, (i). Note that for any k, \hat γ^k_{\rm{Segers}} : R^n \to (-∞, ∞). If \hat γ_{\rm{Segers}} \not \in [-1,0), then it is likely that the log-concavity assumption is violated.
H无论是经验或分布函数的基础上对数凹密度估计和λ混合措施给出塞赫尔斯(2005年),定理4.1,(I)。请注意,任何k,\hat γ^k_{\rm{Segers}} : R^n \to (-∞, ∞)。如果\hat γ_{\rm{Segers}} \not \in [-1,0),那么它很可能,log凹假设的被侵犯。
用法----------Usage----------
generalizedPick(est, c, gam0, ks = NA)
参数----------Arguments----------
参数:est
Log-concave density estimate based on the sample as output by logConDens (a dlc object).
登录凹根据样本的密度估计为输出logConDens(dlc对象)。
参数:c
Number in (0,1), determining the spacings that are used.
在(0,1),确定的间距,所使用的号码。
参数:gam0
Number in R \setminus 0.5, specifying the mixing measure.
数R \setminus 0.5,指定混合的措施。
参数:ks
Indices k at which Falk's estimate should be computed. If set to NA defaults to 4, …, n.
指数kFalk的估计应计算。如果设置为NA默认为4, …, n的。
值----------Value----------
n x 3 matrix with columns: indices k, Segers' estimator using the smoothing method, and
NX 3的矩阵列:指数k,塞赫尔斯估计,使用平滑的方法,
(作者)----------Author(s)----------
Kaspar Rufibach (maintainer), <a href="mailto:kaspar.rufibach@gmail.com">kaspar.rufibach@gmail.com</a>, <br> <a href="http://www.kasparrufibach.ch">http://www.kasparrufibach.ch</a>
Samuel Mueller, <a href="mailto:s.mueller@maths.usyd.edu.au">s.mueller@maths.usyd.edu.au</a>, <br> <a href="http://www.maths.usyd.edu.au/ut/people?who=S_Mueller">http://www.maths.usyd.edu.au/ut/people?who=S_Mueller</a>
Kaspar Rufibach acknowledges support by the Swiss National Science Foundation SNF, <a href="http://www.snf.ch">http://www.snf.ch</a>
参考文献----------References----------
Smooth tail index estimation. J. Stat. Comput. Simul., 79, 1155–1167.
Generalized Pickands estimators for the extreme value index. J. Statist. Plann. Inference, 128, 381–396.
参见----------See Also----------
Other approaches to estimate γ based on the fact that the density is log–concave, thus
其他方法来估计γ,从而根据一个事实,即密度为log凹
实例----------Examples----------
# generate ordered random sample from GPD[形成有序的随机抽样GPD]
set.seed(1977)
n <- 20
gam <- -0.75
x <- rgpd(n, gam)
## generate dlc object[#生成DLC对象]
est <- logConDens(x, smoothed = FALSE, print = FALSE, gam = NULL, xs = NULL)
# compute tail index estimators[计算尾部指数估计]
generalizedPick(est, c = 0.75, gam0 = -1/3)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|